skip to main content


Title: Lagged and dormant season climate better predict plant vital rates than climate during the growing season
Abstract

Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long‐standing quest in ecology, with ever‐increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long‐term data required to test a large number of windows, and are thus forced to makea priorichoices. In this study, we first synthesize the literature to assess currenta priorichoices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding‐window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis,Frasera speciosa,Cylindriopuntia imbricata, andCryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding‐window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.

 
more » « less
Award ID(s):
1912006 1754468 1655499
NSF-PAR ID:
10449602
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
9
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1927-1941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A rapidly changing climate has the potential to interfere with the timing of environmental cues that ectothermic organisms rely on to initiate and regulate life history events. Short‐lived ectotherms that exhibit plasticity in their life history could increase the number of generations per year under warming climate. If many individuals successfully complete an additional generation, the population experiences an additional opportunity to grow, and a warming climate could lead to a demographic bonanza. However, these plastic responses could become maladaptive in temperate regions, where a warmer climate could trigger a developmental pathway that cannot be completed within the growing season, referred to as a developmental trap. Here we incorporated detailed demography into commonly used photothermal models to evaluate these demographic consequences of phenological shifts due to a warming climate on the formerly widespread, multivoltine butterfly (Pieris oleracea). Using species‐specific temperature‐ and photoperiod‐sensitive vital rates, we estimated the number of generations per year and population growth rate over the set of climate conditions experienced during the past 38 years. We predicted that populations in the southern portion of its range have added a fourth generation in recent years, resulting in higher annual population growth rates (demographic bonanzas). We predicted that populations in the Northeast United States have experienced developmental traps, where increases in the thermal window initially caused mortality of the final generation and reduced growth rates. These populations may recover if more growing degree days are added to the year. Our framework for incorporating detailed demography into commonly used photothermal models demonstrates the importance of using both demography and phenology to predict consequences of phenological shifts.

     
    more » « less
  2. Abstract

    Together climate and land‐use change play a crucial role in determining species distribution and abundance, but measuring the simultaneous impacts of these processes on current and future population trajectories is challenging due to time lags, interactive effects and data limitations. Most approaches that relate multiple global change drivers to population changes have been based on occurrence or count data alone.

    We leveraged three long‐term (1995–2019) datasets to develop a coupled integrated population model‐Bayesian population viability analysis (IPM‐BPVA) to project future survival and reproductive success for common loonsGavia immerin northern Wisconsin, USA, by explicitly linking vital rates to changes in climate and land use.

    The winter North Atlantic Oscillation (NAO), a broad‐scale climate index, immediately preceding the breeding season and annual changes in developed land cover within breeding areas both had strongly negative influences on adult survival. Local summer rainfall was negatively related to fecundity, though this relationship was mediated by a lagged interaction with the winter NAO, suggesting a compensatory population‐level response to climate variability.

    We compared population viability under 12 future scenarios of annual land‐use change, precipitation and NAO conditions. Under all scenarios, the loon population was expected to decline, yet the steepest declines were projected under positive NAO trends, as anticipated with ongoing climate change. Thus, loons breeding in the northern United States are likely to remain affected by climatic processes occurring thousands of miles away in the North Atlantic during the non‐breeding period of the annual cycle.

    Our results reveal that climate and land‐use changes are differentially contributing to loon population declines along the southern edge of their breeding range and will continue to do so despite natural compensatory responses. We also demonstrate that concurrent analysis of multiple data types facilitates deeper understanding of the ecological implications of anthropogenic‐induced change occurring at multiple spatial scales. Our modelling approach can be used to project demographic responses of populations to varying environmental conditions while accounting for multiple sources of uncertainty, an increasingly pressing need in the face of unprecedented global change.

     
    more » « less
  3. Abstract

    Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research.

     
    more » « less
  4. Abstract

    We studied the impacts of climate variability on low‐elevation forests in the U.S. northern Rocky Mountains by quantifying how post‐fire tree regeneration and radial growth varied with growing‐season climate. We reconstructed post‐fire regeneration and radial growth rates ofPinus ponderosaandPseudotsuga menziesiiat 33 sites that burned between 1992 and 2007, by aging seedlings at the root–shoot boundary. We also measured radial growth in adult trees from 12 additional sites that burned between 1900 and 1990. To quantify the relationship between climate and regeneration, we characterized seasonal climate before, during, and after recruitment pulses using superposed epoch analysis. To quantify growth sensitivity to climate, we performed moving regression analysis for each species and for juvenile and adult life stages. Climatic conditions favoring regeneration and tree growth differed between species. Water deficit and temperature were significantly lower than average during recruitment pulses of ponderosa pine, suggesting that germination‐year climate limits regeneration. Growing degree days were significantly higher than average during years with Douglas‐fir recruitment pulses, but water deficit was significantly lower one year following pulses, suggesting moisture sensitivity in two‐year‐old seedlings. Growth was also sensitive to water deficit, but effects varied between life stages, species, and through time, with juvenile ponderosa pine growth more sensitive to climate than adult growth and juvenile Douglas‐fir growth. Increasing water deficit corresponded with reduced adult growth of both species. Increases in maximum temperature and water deficit corresponded with increases in juvenile growth of both species in the early 20th century but strong reductions in growth for juvenile ponderosa pine in recent decades. Changing sensitivity of growth to climate suggests that increased temperature and water deficit may be pushing these species toward the edge of their climatic tolerances. Our study demonstrates increased vulnerability of dry mixed‐conifer forests to post‐fire regeneration failures and decreased growth as temperatures and drought increase. Shifts toward unfavorable conditions for regeneration and juvenile growth may alter the composition and resilience of low‐elevation forests to future climate and fire activity.

     
    more » « less
  5. Abstract

    Many exogenous factors may influence demographic rates (i.e., births, deaths, immigration, emigration), particularly for migratory birds that must cope with variable weather and habitat throughout their range and annual cycle. In midcontinental grasslands, disturbance (e.g., fire and grazing) and precipitation influence variation in grassland structure and function, but we know little about when and why precipitation is associated with grassland species' vital rates. We related estimates of detection, survival, and emigration toa priorisets of precipitation metrics to test the putative alternative factors influencing movement and mortality in grasshopper sparrows (Ammodramus savannarum). This species is a migratory songbird that exhibits exceptionally high rates of within‐season and between‐season dispersal. Between 2013 and 2020, we captured and resighted grasshopper sparrows in northeastern Kansas, USA, compiling capture histories for 1,332 adult males. We tested predictions of climatic hypotheses explaining variation in survival and emigration throughout a grasshopper sparrow's annual cycle; both survival and emigration were associated with the El Niño‐Southern Oscillation precipitation index (ESPI). Survival was positively related with ESPI during winter, and temporary emigration was curvilinearly related to breeding season ESPI lagged 2 years, with the highest site fidelity associated with intermediate rainfall values. The relationship between rainfall and temporary emigration likely reflects the influence of weather over multiple years on vegetation structure with consequent effects on local demography. This study provides compelling support for the idea that grassland species respond to high interannual variability by adopting dispersal strategies unlike those of many well‐studied migrant birds. Furthermore, the results imply that the consequences of increasing climatic extremes may not be immediately apparent, with demographic consequences lasting for at least a few years.

     
    more » « less