skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness
Abstract Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.  more » « less
Award ID(s):
1656774 2016143
PAR ID:
10228502
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
Volume:
185
Issue:
4
ISSN:
0032-0889
Page Range / eLocation ID:
1966 to 1985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster‐2 ALAs (ala8/9/10/11/12), which is the most highly expressedALAsubgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2‐fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in anala10/11double KO. The growth and lesion phenotypes ofala8/9/10/11/12mutants were reversed by expressing aNahGtransgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA‐biosynthesis geneISOCHORISMATE SYNTHASE 1(ICS1) and two SA‐responsive genesPATHOGENESIS‐RELATED GENE 1(PR1) andPR2.Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA‐dependent autoimmunity. Yeast‐based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8–12 are at least partially overlapping, and that deficiencies in cluster‐2 ALAs result in an SA‐dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in otherALAclusters. 
    more » « less
  2. Abstract A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3′,5′ epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility. 
    more » « less
  3. Abstract Calcium ion transporting systems control cytosol Ca2+ levels ([Ca2+]cyt) and generate transient calcium (Ca2+) signatures that are key to environmental responses. Here, we report an impact of resting [Ca2+]cyt on plants from the functional study of calmodulin-regulated Ca2+ pumps or Ca2+-ATPases in Arabidopsis (Arabidopsis thaliana). The plasma membrane-localized pumps ACA8 (autoinhibited Ca2+-ATPase) and ACA10, as well as the vacuole-localized pumps ACA4 and ACA11, were critical in maintaining low resting [Ca2+]cyt and essential for plant survival under chilling and heat-stress conditions. Their loss-of-function mutants aca8 aca10 and aca4 aca11 had autoimmunity at normal temperatures, and this deregulated immune activation was enhanced by low temperature, leading to chilling lethality. Furthermore, these mutants showed an elevated resting [Ca2+]cyt, and a reduction of external Ca2+ lowered [Ca2+]cyt and repressed their autoimmunity and cold susceptibility. The aca8 aca10 and the aca4 aca11 mutants were also susceptible to heat, likely resulting from more closed stomata and higher leaf surface temperature than the wild type. These observations support a model in which the regulation of resting [Ca2+]cyt is critical to how plants regulate biotic and abiotic responses. 
    more » « less
  4. Abstract In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions. 
    more » « less
  5. Abstract Sexual reproduction in flowering plants takes place without an aqueous environment. Sperm are carried by pollen through air to reach the female gametophyte, though the molecular basis underlying the protective strategy of the male gametophyte is poorly understood. Here we compared the published transcriptomes of Arabidopsis thaliana pollen, and of heat-responsive genes, and uncovered insights into how mature pollen (MP) tolerates desiccation, while developing and germinating pollen are vulnerable to heat stress. Germinating pollen expresses molecular chaperones or “heat shock proteins” in the absence of heat stress. Furthermore, pollen tubes that grew through pistils at basal temperature showed induction of the endoplasmic reticulum (ER) stress response, which is a characteristic of stressed vegetative tissues. Recent studies show MP contains mRNA–protein (mRNP) aggregates that resemble “stress” granules triggered by heat or other stresses to protect cells. Based on these observations, we postulate that mRNP particles are formed in maturing pollen in response to developmentally programmed dehydration. Dry pollen can withstand harsh conditions as it is dispersed in air. We propose that, when pollen lands on a compatible pistil and hydrates, mRNAs stored in particles are released, aided by molecular chaperones, to become translationally active. Pollen responds to osmotic, mechanical, oxidative, and peptide cues that promote ER-mediated proteostasis and membrane trafficking for tube growth and sperm discharge. Unlike vegetative tissues, pollen depends on stress-protection strategies for its normal development and function. Thus, heat stress during reproduction likely triggers changes that interfere with the normal pollen responses, thereby compromising male fertility. This holistic perspective provides a framework to understand the basis of heat-tolerant strains in the reproduction of crops. 
    more » « less