skip to main content

Title: σ or π? Bonding interactions in a series of rhenium metallotetrylenes
Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 more » ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1954612
Publication Date:
NSF-PAR ID:
10228595
Journal Name:
Dalton Transactions
Volume:
50
Issue:
6
Page Range or eLocation-ID:
2083 to 2092
ISSN:
1477-9226
Sponsoring Org:
National Science Foundation
More Like this
  1. The bis(imido) complexes (BDI)Nb(N t Bu) 2 and (BDI)Nb(N t Bu)(NAr) (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate; Ar = 2,6-diisopropylphenyl) were shown to engage in 1,2-addition and [2 + 2] cycloaddition reactions with a wide variety of substrates. Reaction of the bis(imido) complexes with dihydrogen, silanes, and boranes yielded hydrido-amido-imido complexes via 1,2-addition across Nb-imido π-bonds; some of these complexes were shown to further react via insertion of carbon dioxide to give formate-amido-imido products. Similarly, reaction of (BDI)Nb(N t Bu) 2 with tert -butylacetylene yielded an acetylide-amido-imido complex. In contrast to these results, many related mono(imido) Nb BDI complexes do not exhibit 1,2-addition reactivity, suggesting that π-loading plays an important role in activating the Nb–N π-bonds toward addition. The same bis(imido) complexes were also shown to engage in [2 + 2] cycloaddition reactions with oxygen- and sulfur-containing heteroallenes to give carbamate- and thiocarbamate-imido complexes: some of these complexes readily dimerized to give bis-μ-sulfido, bis-μ-iminodicarboxylate, and bis-μ-carbonate complexes. The mononuclear carbamate imido complex (BDI)Nb(NAr)(N( t Bu)CO 2 ) ( 12 ) could be induced to eject tert -butylisocyanate to generate a four-coordinate terminal oxo imido intermediate, which could be trapped as the five-coordinate pyridine or DMAP adduct. The DMAP adducted oxomore »imido complex (BDI)NbO(NAr)(DMAP) ( 16 ) was shown to engage in 1,2-addition of silanes across the Nb-oxo π-bond; this represents a new reaction pathway in group 5 chemistry.« less
  2. Among the series of stable closo -borate dianions, [B n H n ] 2− , the X-ray crystallographic structure of [B 7 H 7 ] 2− was determined only in 2011. To explore its chemistry and stability, we have isolated and structurally characterized two new transition metal complexes of the heptaborane, [(Cp 2 M) 2 B 9 H 11 ] (Cp = η 5 -C 5 H 5 ; M = Zr or Hf). The structures of [(Cp 2 M) 2 B 9 H 11 ] contain a pentagonal bipyramidal B 7 core, coordinated by two {Cp 2 M} and two {BH 2 } units equatorially. Structural and spectroscopic characterizations and DFT calculations show that [(Cp 2 M) 2 B 9 H 11 ] complexes are substantially more stable than the parent dianion, in either [B 7 H 7 ] 2− or ( n Bu 4 N) 2 [B 7 H 7 ]. Our theoretical study and chemical bonding analyses reveal that the surprising stability of the two new heptaborane metal complexes is due to multi-center covalent bonds related to the two exo -{Cp 2 M} units, as well as electrostatic interactions between the {Cp 2 M} units and themore »B 7 core. The facile syntheses of the heptaborane metal-complexes will allow further exploration of their chemistry.« less
  3. Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords transmore »-H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å.« less
  4. Reduction of Cp′ 3 ThCl, Cp′ 3 ThBr, and Cp′ 3 ThI (Cp′ = C 5 H 4 SiMe 3 ) with potassium graphite generates dark blue solutions with reactivity and spectroscopic properties consistent with the formation of Cp′ 3 Th. The EPR and UV-visible spectra of the solutions are similar to those of crystallographically-characterized tris(cyclopentadienyl) Th( iii ) complexes: [C 5 H 3 (SiMe 3 ) 2 ] 3 Th, (C 5 Me 4 H) 3 Th, (C 5 t Bu 2 H 3 ) 3 Th, and (C 5 Me 5 ) 3 Th. Density functional theory (DFT) analysis indicates that the UV-visible spectrum is consistent with Cp′ 3 Th and not [Cp′ 3 ThBr] 1− . Although single crystals of Cp′ 3 Th have not been isolated, the blue solution reacts with Me 3 SiCl, I 2 , and HCCPh to afford products expected from Cp′ 3 Th, namely, Cp′ 3 ThCl, Cp′ 3 ThI, and Cp′ 3 Th(CCPh), respectively. Reactions with MeI give mixtures of Cp′ 3 ThI and Cp′ 3 ThMe. Evidence for further reduction of the blue solutions to a Cp′-ligated Th( ii ) complex has not been observed. The crystal structures of Cp′more »3 ThMe and (Cp′ 3 Th) 2 (μ-O) were also determined as part of these studies.« less
  5. The green compound poly[(tetrahydrofuran)tris[μ-η 5 :η 5 -1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)], [CsYb(C 8 H 13 Si) 3 (C 4 H 8 O)] n or [(THF)Cs(μ-η 5 :η 5 -Cp′) 3 Yb II ] n was synthesized by reduction of a red THF solution of (C 5 H 4 SiMe 3 ) 3 Yb III with excess Cs metal and identified by X-ray diffraction. The compound crystallizes as a two-dimensional array of hexagons with alternating Cs I and Yb II ions at the vertices and cyclopentadienyl groups bridging each edge. This, based off the six-electron cyclopentadienyl rings occupying three coordination positions, gives a formally nine-coordinate tris(cyclopentadienyl) coordination environment to Yb and the Cs is ten-coordinate due to the three cyclopentadienyl rings and a coordinated molecule of THF. The complex comprises layers of Cs 3 Yb 3 hexagons with THF ligands and Me 3 Si groups in between the layers. The Yb—C metrical parameters are consistent with a 4 f 14 Yb II electron configuration.