We propose an algorithm to solve convex and concave fractional programs and their stochastic counterparts in a common framework. Our approach is based on a novel reformulation that involves differences of square terms in the constraints, and subsequent employment of piecewise-linear approximations of the concave terms. Using the branch-and-bound (B\&B) framework, our algorithm adaptively refines the piecewise-linear approximations and iteratively solves convex approximation problems. The convergence analysis provides a bound on the optimality gap as a function of approximation errors. Based on this bound, we prove that the proposed B\&B algorithm terminates in a finite number of iterations and the worst-case bound to obtain an $$\epsilon$$-optimal solution reciprocally depends on the square root of $$\epsilon$$. Numerical experiments on Cobb-Douglas production efficiency and equitable resource allocation problems support that the algorithm efficiently finds a highly accurate solution while significantly outperforming the benchmark algorithms for all the small size problem instances solved. A modified branching strategy that takes the advantage of non-linearity in convex functions further improves the performance. Results are also discussed when solving a dual reformulation and using a cutting surface algorithm to solve distributionally robust counterpart of the Cobb-Douglas example models.
more »
« less
Improved Vector Pruning in Exact Algorithms for Solving POMDPs
Exact dynamic programming algorithms for solving partially observable Markov decision processes (POMDPs) rely on a subroutine that removes, or “prunes,” dominated vectors from vector sets that represent piecewise-linear and convex value functions. The subroutine solves many linear programs, where the size of the linear programs is proportional to both the number of undominated vectors in the set and their dimension, which severely limits scalability. Recent work improves the performance of this subroutine by limiting the number of constraints in the linear programs it solves by incrementally generating relevant constraints. In this paper, we show how to similarly limit the number of variables. By reducing the size of the linear programs in both ways, we further improve the performance of exact algorithms for POMDPs, especially in solving problems with larger state spaces.
more »
« less
- Award ID(s):
- 1718384
- PAR ID:
- 10228617
- Editor(s):
- Peters, Jonas; Sontag, David
- Date Published:
- Journal Name:
- Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), PMLR
- Volume:
- 124
- Page Range / eLocation ID:
- 1258-1267
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of O(C), where C is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.more » « less
-
Abstract— A core capability of robots is to reason about mul- tiple objects under uncertainty. Partially Observable Markov Decision Processes (POMDPs) provide a means of reasoning under uncertainty for sequential decision making, but are computationally intractable in large domains. In this paper, we propose Object-Oriented POMDPs (OO-POMDPs), which represent the state and observation spaces in terms of classes and objects. The structure afforded by OO-POMDPs support a factorization of the agent’s belief into independent object distributions, which enables the size of the belief to scale linearly versus exponentially in the number of objects. We formulate a novel Multi-Object Search (MOS) task as an OO-POMDP for mobile robotics domains in which the agent must find the locations of multiple objects. Our solution exploits the structure of OO-POMDPs by featuring human language to selectively update the belief at task onset. Using this structure, we develop a new algorithm for efficiently solving OO-POMDPs: Object- Oriented Partially Observable Monte-Carlo Planning (OO- POMCP). We show that OO-POMCP with grounded language commands is sufficient for solving challenging MOS tasks both in simulation and on a physical mobile robot.more » « less
-
This paper proposes a novel method to efficiently solveinfeasiblelow-dimensional linear programs (LDLPs) with billions of constraints and a small number of unknown variables, where all the constraints cannot be satisfied simultaneously. We focus on infeasible linear programs generated in the RLibmproject for creating correctly rounded math libraries. Specifically, we are interested in generating a floating point solution that satisfies the maximum number of constraints. None of the existing methods can solve such large linear programs while producing floating point solutions. We observe that the convex hull can serve as an intermediate representation (IR) for solving infeasible LDLPs using the geometric duality between linear programs and convex hulls. Specifically, some of the constraints that correspond to points on the convex hull are precisely those constraints that make the linear program infeasible. Our key idea is to split the entire set of constraints into two subsets using the convex hull IR: (a) a set of feasible constraints and (b) a superset of infeasible constraints. Using the special structure of the RLibmconstraints and the presence of a method to check whether a system is feasible or not. we identify a superset of infeasible constraints by computing the convex hull in 2-dimensions. Subsequently, we identify the key constraints (i.e., basis constraints) in the set of feasible constraints and use them to create a new linear program whose solution identifies the maximum set of constraints satisfiable in while satisfying all the constraints in . This new solver enabled us to improve the performance of the resulting RLibmpolynomials while solving the corresponding linear programs significantly faster.more » « less
-
We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. \begin{itemize} \item \textbf{Diagonal preconditioning.} We give an algorithm which, given positive definite $$\mathbf{K} \in \mathbb{R}^{d \times d}$$ with $$\mathrm{nnz}(\mathbf{K})$$ nonzero entries, computes an $$\epsilon$$-optimal diagonal preconditioner in time $$\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$$, where $$\kappa^\star$$ is the optimal condition number of the rescaled matrix. \item \textbf{Structured linear systems.} We give an algorithm which, given $$\mathbf{M} \in \mathbb{R}^{d \times d}$$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $$\mathbf{M}$$ in $$\widetilde{O}(d^2)$$ time. \end{itemize} Our diagonal preconditioning results improve state-of-the-art runtimes of $$\Omega(d^{3.5})$$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $$\Omega(d^{\omega})$$ where $$\omega > 2.3$$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call \emph{matrix-dictionary approximation SDPs}, which we leverage to solve an associated problem we call \emph{matrix-dictionary recovery}.more » « less
An official website of the United States government

