skip to main content


Title: Soil origin corresponds with variation in growth of an invasive Centaurea , but not of non‐invasive congeners
Abstract

Why only a small proportion of exotic species become invasive is an unresolved question. Escape from the negative effects of soil biota in the native range can be important for the success of many invasives, but comparative effects of soil biota on less successful exotic species are poorly understood. Studies of other mechanisms suggest that such comparisons might be fruitful. Seeds of three closely relatedCentaureaspecies with overlapping distributions in both their native range of Spain and their nonnative range of California were grown to maturity in pots to obtain an F1 generation of full sibling seeds with reduced maternal effects. Full sibling F1 seeds from both ranges were subsequently grown in pots with inoculations of soil from either the native or nonnative ranges in a fully orthogonal factorial design. We then compared plant biomass among species, regions, and soil sources. Our results indicate that escape from soil pathogens may unleash the highly invasiveCentaurea solstitialis, which was suppressed by native Spanish soils but not by soils from California. In contrast, the two non‐invasiveCentaureaspecies grew the same on all soils. These results add unprecedented phylogenetically controlled insight into why some species invade and others do not.

 
more » « less
Award ID(s):
1757351
NSF-PAR ID:
10454574
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
10
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plant pathogens and herbivores can maintain forest diversity by reducing survival of tree seedlings close to conspecifics. However, how biogeographic variation in these natural enemies affects such distance‐dependent processes is unknown. Because invasive plants escape ecologically important enemies when introduced to a new range, distance‐dependent mortality may differ between their native and introduced ranges.

    Here, we test whether the invasive treeTriadica sebiferaescaped distance‐dependent mortality when introduced to the United States from China, and examine the roles of natural enemies in native and introduced ranges. In both the United States and China, we performed field surveys along with field and greenhouse experiments with field‐collected soils and soil sterilization treatments.

    In field surveys and the field experiment, insect damage onT. sebiferaseedlings decreased with distance to conspecific trees in the native range (China), but damage was low at all distances in the introduced range (United States). In the greenhouse experiment testing the effects of soil pathogens,T. sebiferaseedling mortality decreased with soil distance from conspecific trees in both ranges but distance‐independent mortality was higher in native range soils.

    Our findings indicate that both insect herbivores and the soil biota contribute to distance‐dependent effects onT. sebiferain its native range. They suggest, however, that plants may more readily escape herbivore than soil biota distance‐dependent effects when introduced to a new range and so herbivores, rather than soil pathogens, contribute more strongly to biogeographic variation in distance‐dependent effects. These results highlight the importance of considering species biogeographic variation in distance‐dependent effects and teasing apart the roles that different natural enemies play when studying species coexistence, community diversity and biological invasions.

     
    more » « less
  2. Abstract

    The enemy release hypothesis (ERH) attributes the success of some exotic plant species to reduced top‐down effects of natural enemies in the non‐native range relative to the native range. Many studies have tested this idea, but very few have considered the simultaneous effects of multiple kinds of enemies on more than one invasive species in both the native and non‐native ranges. Here, we examined the effects of two important groups of natural enemies–insect herbivores and soil biota–on the performance ofTanacetum vulgare(native to Europe but invasive in the USA) andSolidago canadensis(native to the USA but invasive in Europe) in their native and non‐native ranges, and in the presence and absence of competition.

    In the field, we replicated full‐factorial experiments that crossed insecticide,T. vulgare–S. canadensiscompetition, and biogeographic range (Europe vs. USA) treatments. In greenhouses, we replicated full‐factorial experiments that crossed soil sterilization, plant–soil feedback, and biogeographic range treatments. We evaluated the effects of experimental treatments onT. vulgareandS. canadensisbiomass.

    The effects of natural enemies were idiosyncratic. In the non‐native range and relative to populations in the native range,T. vulgareescaped the negative effects of insect herbivores but not soil biota, depending upon the presence ofS. canadensis; andS. canadensisescaped the negative effects of soil biota but not insect herbivores, regardless of competition. Thus, biogeographic escape from natural enemies depended upon the enemies, the invader, and competition.

    Synthesis:By explicitly testing the ERH in terms of more than one kind of enemy, more than one invader, and more than one continent, this study enhances our nuanced perspective of how natural enemies can influence the performance of invasive species in their native and non‐native ranges.

     
    more » « less
  3. Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of belowground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorporating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI = 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phylogenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in biological invasions, consistent with the predictions of the enemy escape hypothesis. 
    more » « less
  4. Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of below- ground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorpo- rating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phy- logenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in bio- logical invasions, consistent with the predictions of the enemy escape hypothesis. 
    more » « less
  5. Abstract

    Some invasive plant species rapidly evolve greater size and/or competitive ability in their nonnative ranges. However, it is not well known whether these traits transfer back to the native range, or instead represent genotype‐by‐environment interactions where traits are context specific to communities in the new range where the evolution occurred. Insight into transferability vs. context specificity can be tested using experiments performed with individuals from populations from the native and nonnative ranges of exotic invasive species. Using a widespread invasive plant species in Europe,Solidago gigantea, we established reciprocal common garden experiments in the native range (Montana, North America;n = 4) and the nonnative range (Hungary, Europe;n = 4) to assess differences in size, vegetative shoot number, and herbivory between populations from the native and nonnative ranges. In a greenhouse experiment, we also tested whether the inherent competitive ability of genotypes from 15 native and 15 invasive populations differed when pitted against 11 common native North American competitors. In common gardens, plants from both ranges considered together produced five times more biomass, grew four times taller, and developed five times more rhizomes in the nonnative range garden compared to the native range garden. The interaction between plant origin and the common garden location was highly significant, with plants from Hungary performing better than plants from Montana when grown in Hungary, and plants from Montana performing better than plants from Hungary when grown in Montana. In the greenhouse, there were no differences in the competitive effects and responses ofS. giganteaplants from the two ranges when grown with North American natives. Our results suggest thatS. giganteamight have undergone rapid evolution for greater performance abroad, but if so, this response does not translate to greater performance at home.

     
    more » « less