Abstract Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolutionary integration (a tendency of structures to covary in size or shape across evolutionary history). Functional coupling, functional coordination, and evolutionary integration have each been proposed to limit morphological diversification to some extent. Yet teleosts show extraordinary cranial diversity, suggesting that there are mechanisms within some teleost clades that promote morphological diversification, even within the highly integrated suction feeding and gill ventilatory systems. To investigate this, we quantified evolutionary integration among four mechanical units associated with suction feeding and gill ventilation in a diverse clade of benthic, primarily suction-feeding fishes (Cottoidei; sculpins and relatives). We reconstructed cottoid phylogeny using molecular data from 108 species, and obtained 24 linear measurements of four mechanical units (jaws, hyoid, opercular bones, and branchiostegal rays) from micro-CT reconstructions of 44 cottoids and 1 outgroup taxon. We tested for evolutionary correlation and covariation among the four mechanical units using phylogenetically corrected principal component analysis to reduce the dimensionality of measurements for each unit, followed by correlating phylogenetically independent contrasts and computing phylogenetic generalized least squares models from the first principle component axis of each of the four mechanical units. The jaws, opercular bones, and branchiostegal rays show evolutionary integration, but the hyoid is not positively integrated with these units. To examine these results in an ecomorphological context, we used published ecological data in phylogenetic ANOVA models to demonstrate that the jaw is larger in fishes that eat elusive or grasping prey (e.g., prey that can easily escape or cling to the substrate) and that the hyoid is smaller in intertidal and hypoxia-tolerant sculpins. Within Cottoidei, the relatively independent evolution of the hyoid likely has reduced limitations on morphological evolution within the highly morphologically integrated suction feeding and gill ventilatory systems.
more »
« less
The trilobite upper limb branch is a well-developed gill
Whether the upper limb branch of Paleozoic “biramous” arthropods, including trilobites, served a respiratory function has been much debated. Here, new imaging of the trilobite Triarthrus eatoni shows that dumbbell-shaped filaments in the upper limb branch are morphologically comparable with gill structures in crustaceans that aerate the hemolymph. In Olenoides serratus , the upper limb’s partial articulation to the body via an extended arthrodial membrane is morphologically comparable to the junction of the respiratory book gill of Limulus and differentiates it from the typically robust exopod junction in Chelicerata or Crustacea. Apparently limited mechanical rotation of the upper branch may have protected the respiratory structures. Partial attachment of the upper branch to the body wall may represent an intermediate state in the evolution of limb branch fusion between dorsal attachment to the body wall, as in Radiodonta, and ventral fusion to the limb base, as in extant Euarthropoda.
more »
« less
- PAR ID:
- 10228771
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 14
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabe7377
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although beginning to emerge, multiarticulate upper limb prostheses for children remain sparse despite the continued advancement of mechatronic technologies that have benefited adults with upper limb amputations. Upper limb prosthesis research is primarily focused on adults, even though rates of pediatric prosthetic abandonment far surpass those seen in adults. The implicit goal of a prosthesis is to provide effective functionality while promoting healthy social interaction. Yet most current pediatric devices offer a single degree of freedom open/close grasping function, a stark departure from the multiple grasp configurations provided in advanced adult devices. Although comparable child-sized devices are on the clinical horizon, understanding how to effectively translate these technologies to the pediatric population is vital. This includes exploring grasping movements that may provide the most functional benefits and techniques to control the newly available dexterity. Currently, no dexterous pediatric research platforms exist that offer open access to hardware and programming to facilitate the investigation and provision of multi-grasp function. Our objective was to deliver a child-sized multi-grasp prosthesis that may serve as a robust research platform. In anticipation of an open-source release, we performed a comprehensive set of benchtop and functional tests with common household objects to quantify the performance of our device. This work discusses and evaluates our pediatric-sized multiarticulate prosthetic hand that provides 6 degrees of actuation, weighs 177 g and was designed specifically for ease of implementation in a research or clinical-research setting. Through the benchtop and validated functional tests, the pediatric hand produced grasping forces ranging from 0.424–7.216 N and was found to be comparable to the functional capabilities of similar adult devices. As mechatronic technologies advance and multiarticulate prostheses continue to evolve, translating many of these emerging technologies may help provide children with more useful and functional prosthesis options. Effective translation will inevitably require a solid scientific foundation to inform how best to prescribe advanced prosthetic devices and control systems for children. This work begins addressing these current gaps by providing a much-needed research platform with supporting data to facilitate its use in laboratory and clinical research settings.more » « less
-
As species move into new environments through founder events, their phenotypes may diverge from native populations. Identifying the drivers underlying such variation and the constraints on the adaptive potential of this variation is essential for understanding how organisms respond to new or rapidly changing habitats. Such phenotypic divergence may be especially evident in populations introduced to new environments via human-assisted transport or in dramatically altered environments such as cities. Sexually dimorphic species beg the additional questions of how these new environments may influence the sexes differently and how dimorphism may shape the range of potential responses. The repeated translocation, establishment, and spread of wall lizards (Podarcis spp.) from native European populations to new locations in North America provide an excellent natural experiment to explore how phenotypes may differ after establishment in a new environment. Here, we quantify body shape and the multivariate morphological phenotype (incorporating limb dimensions and head length) of common wall lizards (P. muralis) and Italian wall lizards (P. siculus) in replicated North American introductions. In both species, males are larger and have larger head length and limb dimensions than females across all sampled groups. Sexual dimorphism in the multivariate morphological phenotype was of similar magnitude when comparing native and introduced populations for both species, though the trajectory angles in multivariate trait space differed in P. siculus. When comparing introduced lizards from contemporary and historically collected museum specimens, we identified differences of similar magnitude but in different trajectories between sexes in P. siculus, and differences in both magnitude and direction of sexual dimorphism in P. muralis. These idiosyncratic patterns in phenotypic trajectories provide insight to the potential array of processes generating phenotypic variation within species at the intersection of invasion biology and urban evolution.more » « less
-
Sex-specific Morphological Shifts Across Space and Time in Replicate Urban Wall Lizard IntroductionsSynopsis As species move into new environments through founder events, their phenotypes may diverge from native populations. Identifying the drivers underlying such variation, and the constraints on the adaptive potential of this variation, is essential for understanding how organisms respond to new or rapidly changing habitats. Such phenotypic divergence may be especially evident in populations introduced to new environments via human-assisted transport or populations in dramatically altered environments such as cities. Sexually dimorphic species beg the additional questions of how these new environments may influence sexes differently and how dimorphism may shape the range of potential responses. The repeated translocation, establishment, and spread of wall lizards (Podarcis spp.) from native European populations to new locations in North America provide an excellent natural experiment to explore how phenotypes may differ after establishment in a new environment. Here, we quantify body shape and the multivariate morphological phenotype (incorporating limb dimensions and head length) of common wall lizards (P. muralis) and Italian wall lizards (P. siculus) in replicated North American introductions. In both species, males are larger and have larger head length and limb dimensions than females across all sampled groups. Sexual dimorphism in the multivariate morphological phenotype was of similar magnitude when comparing native and introduced populations for both species, though the trajectory angles in multivariate trait space differed in P. siculus. When comparing introduced lizards from contemporary and historically collected museum specimens, we identified differences of similar magnitude but in different trajectories between sexes in P. siculus, and differences in both magnitude and direction of sexual dimorphism in P. muralis. These idiosyncratic patterns in phenotypic trajectories provide insight to the potential array of processes generating phenotypic variation within species at the intersection of invasion biology and urban evolution.more » « less
-
Krishnan, Viswanathan V. (Ed.)At the outset of an emergent viral respiratory pandemic, sequence data is among the first molecular information available. As viral attachment machinery is a key target for therapeutic and prophylactic interventions, rapid identification of viral “spike” proteins from sequence can significantly accelerate the development of medical countermeasures. For six families of respiratory viruses, covering the vast majority of airborne and droplet-transmitted diseases, host cell entry is mediated by the binding of viral surface glycoproteins that interact with a host cell receptor. In this report it is shown that sequence data for an unknown virus belonging to one of the six families above provides sufficient information to identify the protein(s) responsible for viral attachment. Random forest models that take as input a set of respiratory viral sequences can classify the protein as “spike” vs. non-spike based on predicted secondary structure elements alone (with 97.3% correctly classified) or in combination with N-glycosylation related features (with 97.0% correctly classified). Models were validated through 10-fold cross-validation, bootstrapping on a class-balanced set, and an out-of-sample extra-familial validation set. Surprisingly, we showed that secondary structural elements and N-glycosylation features were sufficient for model generation. The ability to rapidly identify viral attachment machinery directly from sequence data holds the potential to accelerate the design of medical countermeasures for future pandemics. Furthermore, this approach may be extendable for the identification of other potential viral targets and for viral sequence annotation in general in the future.more » « less
An official website of the United States government

