skip to main content

Title: NanTroSEIZE Stage 3: Shallow Megasplay Long-Term Borehole Monitoring System
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: 1. Retrieval of a temporary observatory at Site C0010 that began monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor in November 2010. 2. Deployment of a complex long-term borehole monitoring system (LTBMS) designed to be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition. The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a planned future installation near the trench, the Site C0010 observatory more » allows monitoring within and above regions of contrasting behavior of the megasplay fault and the plate boundary as a whole. These include a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (possible future installation at Integrated Ocean Drilling Program Site C0006). Together, this suite of observatories has the potential to capture deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across a transect from near-trench to the seismogenic zone. Site C0010 is located 3.5 km along strike to the southwest of Integrated Ocean Drilling Program Site C0004. The site was drilled and cased during Integrated Ocean Drilling Program Expedition 319, with casing screens spanning a ~20 m interval that includes the megasplay fault, and suspended with a temporary instrument package (a “SmartPlug”), which included pressure and temperature sensors. During Integrated Ocean Drilling Program Expedition 332 in late 2010, the instrument package was replaced with an upgraded sensor package (the “GeniusPlug”), which included a set of geochemical and biological experiments in addition to pressure and temperature sensors. Expedition 365 achieved its primary scientific and operational objectives, including recovery of the GeniusPlug with a >5 y record of pressure and temperature conditions within the shallow megasplay fault zone, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 11 March 2011 Tohoku M9 and 1 April 2016 Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the splay fault zone, and microorganisms were successfully cultivated from the colonization unit. The complex sensor array, in combination with the multilevel hole completion, is one of the most ambitious and sophisticated observatory installations in scientific ocean drilling (similar to that in Hole C0002G, deployed in 2010). Overall, the installation went smoothly, efficiently, and ahead of schedule. The extra time afforded by the efficient observatory deployment was used for coring in Holes C0010B–C0010E. Despite challenging hole conditions, the depth interval corresponding to the screened casing across the megasplay fault was successfully sampled in Hole C0010C, and the footwall of the megasplay was sampled in Hole C0010E, with >50% recovery for both zones. In the hanging wall of the megasplay fault (Holes C0010C and C0010D), we recovered indurated silty clay with occasional ash layers and sedimentary breccias. Mudstones show different degrees of deformation spanning from occasional fractures to intervals of densely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2 cm) is seen in core and exhibits primarily normal and, rarely, reversed sense of slip. When present, ash was entrained along fractures and faults. In Hole C0010E, the footwall to the megasplay fault was recovered. Sediments are horizontally to gently dipping and mainly comprise silt of olive-gray color. The hanging wall sediments recovered in Holes C0010C–C0010D range in age from 3.79 to 5.59 Ma and have been thrust over the younger footwall sediments in Hole C0010E, ranging in age from 1.56 to 1.67 Ma. The deposits of the underthrust sediment prism are less indurated than the hanging wall mudstones and show lamination on a centimeter scale. The material is less intensely deformed than the mudstones, and apart from occasional fracturation (some of it being drilling disturbance), evidence of structural features is absent. « less
Authors:
; ;
Award ID(s):
1326927
Publication Date:
NSF-PAR ID:
10228873
Journal Name:
Proceedings of the International Ocean Discovery Program
Volume:
365
ISSN:
2377-3189
Sponsoring Org:
National Science Foundation
More Like this
  1. The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: (1) retrieval of a temporary observatory at Site C0010 that has been monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor since November 2010 and (2) deployment of a complex long-term borehole monitoring system (LTBMS) that will be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition (anticipated June 2016). The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a possible future installation near themore »trench, the Site C0010 observatory will allow monitoring within and above regions of contrasting behavior of the megasplay fault and the plate boundary as a whole. These include a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (Integrated Ocean Drilling Program Site C0006). Together, this suite of observatories has the potential to capture deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across a transect from near-trench to the seismogenic zone. Site C0010 is located 3.5 km along strike to the southwest of Integrated Ocean Drilling Program Site C0004. The site was drilled and cased during Integrated Ocean Drilling Program Expedition 319, with casing screens spanning a ~20 m interval that includes the megasplay fault, and suspended with a temporary instrument package (a “SmartPlug”). During Integrated Ocean Drilling Program Expedition 332 in late 2010, the instrument package was replaced with an upgraded sensor package (the “GeniusPlug”), which included pressure and temperature sensors and a set of geochemical and biological experiments. Expedition 365 achieved its primary scientific and operational objectives, including recovery of the GeniusPlug with a >5 y record of pressure and temperature conditions within the shallow megasplay fault zone, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 11 March 2011 Tohoku M9 and 1 April 2016 Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the splay fault zone, and microbes were successfully cultivated from the colonization unit. The complex sensor array, in combination with the multilevel hole completion, is one of the most ambitious and sophisticated observatory installations in scientific ocean drilling (similar to that in Hole C0002G, deployed in 2010). Overall, the installation went smoothly, efficiently, and ahead of schedule. The extra time afforded by the efficient observatory deployment was used for coring in Holes C0010B–C0010E. Despite challenging hole conditions, the depth interval corresponding to the screened casing across the megasplay fault was successfully sampled in Hole C0010C, and the footwall of the megasplay was sampled in Hole C0010E, with >50% recovery for both zones. In the hanging wall of the megasplay fault (Holes C0010C and C0010D), we recovered indurated silty clay with occasional ash layers and sedimentary breccias. Some of the deposits show burrows and zones of diagenetic alteration/colored patches. Mudstones show different degrees of deformation spanning from occasional fractures to intervals of densely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2 cm) is seen in core and exhibits primarily normal and, rarely, reversed sense of slip. When present, ash was entrained along fractures and faults. On one occasion, a ~10 cm thick ash layer was found, which showed a fining-downward gradation into a mottled zone with clasts of the underlying silty claystones. In Hole C0010E, the footwall to the megasplay fault was recovered. Sediments are horizontally to gently dipping and mainly comprise silt of olive-gray color. The deposits of the underthrust sediment prism are less indurated than the hanging wall mudstones and show lamination on a centimeter scale. The material is less intensely deformed than the mudstones, and apart from occasional fracturation (some of it being drilling disturbance), evidence of structural features is absent.« less
  2. The multiexpedition Integrated Ocean Drilling Program/International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) was designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. Overall NanTroSEIZE scientific objectives include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. Expedition 380 was the twelfth NanTroSEIZE expedition since 2007. Refer to Kopf et al. (2017) for a comprehensive summary of objectives, operations, and results during the first 11 expeditions. Expedition 380 focused on one primary objective: riserless deployment of a long-term borehole monitoring system (LTBMS) in Hole C0006G in the overriding plate at the toe of the Nankai accretionary prism. The LTBMS installed in Hole C0006G incorporates multilevel pore pressure sensing and a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Similar previous LTBMS installations were completed farther upslope at IODP Sites C0002 and C0010. The ~35 km trench-normal transect of three LTBMS installations will provide monitoring within and above regions of contrasting behavior in the megasplay fault and the plate boundary asmore »a whole, including a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (the Expedition 380 installation at Site C0006). In combination, this suite of observatories has the potential to capture stress and deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across the transect from near-trench to the seismogenic zone. Expedition 380 achieved its primary scientific and operational goal with successful installation of the LTBMS to a total depth of 457 m below seafloor in Hole C0006G. The installation was conducted in considerably less time than budgeted, partly because the Kuroshio Current had shifted away from the NanTroSEIZE area after 10 y of seriously affecting D/V Chikyu NanTroSEIZE operations. After Expedition 380, the LTBMS was to be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis in March 2018 using the remotely operated vehicle Hyper-Dolphin from the Japan Agency for Marine-Earth Science and Technology R/V Shinsei Maru.« less
  3. The multiexpedition Integrated Ocean Drilling Program/International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) project was designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. Overall NanTroSEIZE scientific objectives include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. Expedition 380 was the twelfth NanTroSEIZE expedition since 2007. Refer to Kopf et al. (2017) for a comprehensive summary of objectives, operations, and results during the first 11 expeditions. Expedition 380 focused on one primary objective: riserless deployment of a long-term borehole monitoring system (LTBMS) in Hole C0006G in the overriding plate at the toe of the Nankai accretionary prism. The LTBMS installed in Hole C0006G incorporates multilevel pore-pressure sensing and a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Similar previous LTBMS installations were completed farther upslope at IODP Sites C0002 and C0010. The ~35 km trench–normal transect of three LTBMS installations will provide monitoring within and above regions of contrasting behavior in the megasplay fault and the plate boundary asmore »a whole, including a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (the Expedition 380 installation at Site C0006). In combination, this suite of observatories has the potential to capture stress and deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across the transect from near-trench to the seismogenic zone. Expedition 380 achieved its primary scientific and operational goal with successful installation of the LTBMS to a total depth of 457 m below seafloor in Hole C0006G. The installation was conducted in considerably less time than budgeted, partly because the Kuroshio Current had shifted away from the NanTroSEIZE area after 10 y of seriously affecting D/V Chikyu NanTroSEIZE operations. After Expedition 380, the LTBMS was successfully connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) in March 2018 using the remotely operated vehicle Hyper-Dolphin from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) R/V Shinsei Maru.« less
  4. The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) program is a coordinated, multiexpedition drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. International Ocean Discovery Program (IODP) Expedition 365 will recover temporary monitoring instruments (a “GeniusPlug”) from previously drilled and cased Integrated Ocean Drilling Program Site C0010 and deploy a permanent long-term borehole monitoring system (LTBMS) in the same hole after deepening it to ~656 meters below seafloor (mbsf). These operations will complete preparations begun during Integrated Ocean Drilling Program Expedition 319 and continued during Integrated Ocean Drilling Program Expedition 332. This expedition will cover a period of 33 days, beginning on 26 March and ending on 27 April 2016. Site C0010 is located 3.5 km north of Integrated Ocean Drilling Program Site C0004 and was first drilled during Expedition 319. Operations during that expedition included drilling through the megasplay fault zone and into itsmore »footwall using logging while drilling (LWD), setting casing with screens spanning the fault zone, and installation of a simple temporary observatory (a “SmartPlug”) to monitor fluid pressure and temperature in the screened interval. Major lithologic boundaries as well as the location of the megasplay fault at ~407 mbsf were identified in LWD data and were used to select a depth interval spanning the fault for placement of the two screened casing joints. Three distinct lithologic packages were observed at Site C0010: slope deposits (Unit I, 0–182.5 mbsf), thrust wedge (Unit II, 182.5–407 mbsf), and overridden slope deposits (Unit III, 407 mbsf to total depth). During Expedition 332, the SmartPlug was recovered and replaced with an upgraded version, the GeniusPlug, which includes a set of geochemical and biological experiments housed in a 30 cm extension. This GeniusPlug will be recovered and replaced with a permanent LTBMS, which will be later linked to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) submarine network. This Scientific Prospectus outlines the scientific rationale, objectives, and operational plans for Site C0010 and describes the contingency plan.« less
  5. The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) program is a coordinated, multiexpedition drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. Site C0002 is in the Kumano forearc basin above the seismogenic, and presumably locked, portion of the plate boundary thrust system. The Kumano Basin sedimentary sequence and uppermost part of the accretionary prism were drilled, logged, and sampled during Integrated Ocean Drilling Program Expeditions 314 (logging while drilling [LWD] to 1401.5 mbsf), 315 (coring to 1057 mbsf), 338 (LWD to 2005 mbsf and coring to 1120 mbsf), and 348 (LWD to 3058.5 mbsf, with limited coring from 2163-2218.5 mbsf). International Ocean Discovery Program (IODP) Expedition 358 aims to reach and sample the megasplay fault/plate boundary fault at Site C0002 by extending the riser borehole (Hole C0002P) established during previous Integrated Ocean Drilling Program NanTroSEIZE expeditions. Evidence suggests that the drilling target at the megasplaymore »will reach a region where megathrust seismogenic processes are active. A new borehole will be “kicked off” from Hole C0002P and will be extended to ~5000 meters below seafloor (mbsf) and then across the high-amplitude seismic reflector identified as the main plate boundary fault. Continuous LWD with drilling mud gas analysis and limited coring at the anticipated plate boundary fault depth, will leave the cased borehole completed at ~5200 mbsf. A suite of analyses on cuttings, mud gases, and limited cores will address the four primary scientific objectives: (1) determine the composition, stratigraphy, and deformational history of the Miocene accretionary prism; (2) reconstruct its thermal, diagenetic, and metamorphic history; (3) determine horizontal stress orientations and magnitudes; and (4) investigate the mechanical and hydrological properties of the upper plate of the seismogenic plate boundary. The main scientific objective is to log and sample the hanging wall, the fault zone, and into the footwall. The main contingency plan is to leave a cased borehole in good condition for future installation of a long-term borehole monitoring system (LTBMS). These operations will extend drilling conducted during Integrated Ocean Drilling Program Expeditions 326, 338, and 348. The entire expedition will cover a period of 164 days, beginning on 7 October 2018 and ending on 21 March 2019.« less