Dynamic wavefront shaping with optical metasurfaces has presented a major challenge and inspired a large number of highly elaborate solutions. Here, this study experimentally demonstrates thermo‐optically reconfigurable, nonlocal metasurfaces using simple device architectures and conventional CMOS‐compatible dielectric materials. These metasurfaces support quasi‐bound states in the continuum (q‐BICs) derived from symmetry breaking and encoded with a spatially varying geometric phase, such that they shape optical wavefront exclusively on spectrally narrowband resonances. Due to the enhanced light‐matter interaction enabled by the resonant q‐BICs, a slight variation of the refractive index introduced by heating and cooling the entire device leads to a substantial shift of the resonant wavelength and a subsequent change to the optical wavefront associated with the resonance. This study experimentally demonstrates a metalens modulator, the focusing capability of which can be thermally turned on and off, and reconfigurable metalenses, which can be thermo‐optically switched to produce two distinct focal patterns. The devices offer a pathway to realize reconfigurable, multifunctional meta‐optics using established manufacturing processes and widely available dielectric materials that are conventionally not considered “active” materials due to their small thermo‐optic or electro‐optic coefficients.
- PAR ID:
- 10228877
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2192-8606
- Page Range / eLocation ID:
- 655 to 665
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth, while nonlocal lattice modes extended over many unit cells support high quality-factor resonances. Here, we experimentally demonstrate nonlocal dielectric metasurfaces in the near-infrared that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices attain this functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We leverage this capability to experimentally realize a versatile platform for multispectral wavefront shaping where a stack of metasurfaces, each supporting multiple independently controlled quasi-bound states in the continuum, molds the optical wavefront distinctively at multiple wavelengths and yet stay transparent over the rest of the spectrum. Such a platform is scalable to the visible for applications in augmented reality and transparent displays.
-
Optical metasurfaces have provided us with extraordinary ways to control light by spatially structuring materials. The space-time duality in Maxwell’s equations suggests that additional structuring of metasurfaces in the time domain can even further expand their impact on the field of optics. Advances toward this goal critically rely on the development of new materials and nanostructures that exhibit very large and fast changes in their optical properties in response to external stimuli. New physics is also emerging as ultrafast tuning of metasurfaces is becoming possible, including wavelength shifts that emulate the Doppler effect, Lorentz nonreciprocity, time-reversed optical behavior, and negative refraction. The large-scale manufacturing of dynamic flat optics has the potential to revolutionize many emerging technologies that require active wavefront shaping with lightweight, compact, and power-efficient components.more » « less
-
Graphene is a promising materials platform for metasurface flat optics at terahertz wavelengths, with the important advantage of active tunability. Here we review recent work aimed at the development of tunable graphene metasurfaces for THz wavefront shaping (including beam-steering metamirrors and metalenses) and light emission. Various design strategies for the constituent meta-units are presented, ranging from metallic phase-shifting elements combined with a nearby graphene sheet for active tuning to graphene plasmonic resonators providing the required phase control or radiation mechanism. The key challenge in the development of these devices, related to the limited radiative coupling of graphene plasmonic excitations, is discussed in detail together with recently proposed solutions. The resulting metasurface technology can be expected to have a far-reaching impact on a wide range of device applications for THz imaging, sensing, and future wireless communications.
-
We propose, design, and experimentally demonstrate a nonlocal metasurface with frequency-selective, wavefront shaping capabilities and at the same time polarization-selective chiral response. This operation requires the implementation of bilayer metasurfaces with engineered nonlocal response, wherein each layer controls locally a specific linear polarization, while the coupled system supports arbitrary polarization states. We demonstrate that this platform enables unprecedented control over wavefront manipulation, including frequency-selective, spin-selective reflection with arbitrary geometric phase. We observe a highly chiral response with record-high reflectance efficiency over a narrow frequency window, both for a uniform metasurface and for one with tailored phase gradient for anomalous reflection. Both devices provide an efficiency well above the theoretical limit of 25% for conventional single-layer devices. Our work opens exciting opportunities for augmented reality and enhanced secure wireless communications.more » « less