Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe−4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe−4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms. 
                        more » 
                        « less   
                    
                            
                            Trapping a cross-linked lysine–tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB
                        
                    
    
            The radicalS-adenosylmethionine (rSAM) enzyme SuiB catalyzes the formation of an unusual carbon–carbon bond between the sidechains of lysine (Lys) and tryptophan (Trp) in the biosynthesis of a ribosomal peptide natural product. Prior work on SuiB has suggested that the Lys–Trp cross-link is formed via radical electrophilic aromatic substitution (rEAS), in which an auxiliary [4Fe-4S] cluster (AuxI), bound in the SPASM domain of SuiB, carries out an essential oxidation reaction during turnover. Despite the prevalence of auxiliary clusters in over 165,000 rSAM enzymes, direct evidence for their catalytic role has not been reported. Here, we have used electron paramagnetic resonance (EPR) spectroscopy to dissect the SuiB mechanism. Our studies reveal substrate-dependent redox potential tuning of the AuxI cluster, constraining it to the oxidized [4Fe-4S]2+state, which is active in catalysis. We further report the trapping and characterization of an unprecedented cross-linked Lys–Trp radical (Lys–Trp•) in addition to the organometallic Ω intermediate, providing compelling support for the proposed rEAS mechanism. Finally, we observe oxidation of the Lys–Trp• intermediate by the redox-tuned [4Fe-4S]2+AuxI cluster by EPR spectroscopy. Our findings provide direct evidence for a role of a SPASM domain auxiliary cluster and consolidate rEAS as a mechanistic paradigm for rSAM enzyme-catalyzed carbon–carbon bond-forming reactions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1847932
- PAR ID:
- 10228914
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 21
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2101571118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Enzymes of the radicalS-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5′C is covalently bound to the unique iron of the [4Fe–4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe–C5′ bond generates the nominally “free” 5′-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5′-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5′-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.more » « less
- 
            The critical role of a conserved lysine residue in periplasmic nitrate reductase catalyzed reactionsPeriplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe–4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe–4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe–4S cluster. K79 forms H-bonding interactions with the 4Fe–4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.more » « less
- 
            Abstract WhiB1 is a monomeric iron–sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe–4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe–4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators.more » « less
- 
            Abstract Cooperative catalysis with an enzyme and a small‐molecule photocatalyst has recently emerged as a potentially general activation mode to advance novel biocatalytic reactions with synthetic utility. Herein, we report cooperative photobiocatalysis involving an engineered nonheme Fe enzyme and a tailored photoredox catalyst to achieve enantioconvergent decarboxylative azidation, thiocyanation, and isocyanation of redox‐active esters via a radical mechanism. We repurposed and further evolved metapyrocatechase (MPC), a nonheme Fe extradiol dioxygenase not previously studied in new‐to‐nature biocatalysis, for the enantioselective C─N3, C─SCN, and C─NCO bond formation via an enzymatic Fe─X intermediate (X═N3, NCS, and NCO). A range of primary, secondary, and tertiary alkyl radical precursors were effectively converted by our engineered MPC, allowing the syntheses of organic azides, thiocyanates, and isocyanates with good to excellent enantiocontrol. Further derivatization of these products furnished valuable compounds including enantioenriched amines, triazoles, ureas, and SCF3‐containing products. DFT and MD simulations shed light on the mechanism as well as the binding poses of the alkyl radical intermediate in the enzyme active site and the π‐facial selectivity in the enantiodetermining radical rebound. Overall, cooperative photometallobiocatalysis with nonheme Fe enzymes provides a means to develop challenging asymmetric radical transformations eluding small‐molecule catalysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
