skip to main content

Title: Trapping a cross-linked lysine–tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB

The radicalS-adenosylmethionine (rSAM) enzyme SuiB catalyzes the formation of an unusual carbon–carbon bond between the sidechains of lysine (Lys) and tryptophan (Trp) in the biosynthesis of a ribosomal peptide natural product. Prior work on SuiB has suggested that the Lys–Trp cross-link is formed via radical electrophilic aromatic substitution (rEAS), in which an auxiliary [4Fe-4S] cluster (AuxI), bound in the SPASM domain of SuiB, carries out an essential oxidation reaction during turnover. Despite the prevalence of auxiliary clusters in over 165,000 rSAM enzymes, direct evidence for their catalytic role has not been reported. Here, we have used electron paramagnetic resonance (EPR) spectroscopy to dissect the SuiB mechanism. Our studies reveal substrate-dependent redox potential tuning of the AuxI cluster, constraining it to the oxidized [4Fe-4S]2+state, which is active in catalysis. We further report the trapping and characterization of an unprecedented cross-linked Lys–Trp radical (Lys–Trp•) in addition to the organometallic Ω intermediate, providing compelling support for the proposed rEAS mechanism. Finally, we observe oxidation of the Lys–Trp• intermediate by the redox-tuned [4Fe-4S]2+AuxI cluster by EPR spectroscopy. Our findings provide direct evidence for a role of a SPASM domain auxiliary cluster and consolidate rEAS as a mechanistic paradigm for rSAM enzyme-catalyzed carbon–carbon bond-forming reactions.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
Article No. e2101571118
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron‐sulfur clusters are required in a variety of biological processes. Biogenesis of iron‐sulfur clusters includes assembly of iron‐sulfur clusters on scaffold complexes and transfer of iron‐sulfur clusters to recipient apoproteins by iron‐sulfur carriers, such as nitrogen‐fixation‐subunit‐U (NFU)‐type proteins.Arabidopsis thalianahas three plastid‐targeted NFUs: NFU1, NFU2, and NFU3. We previously discovered thatnfu2−/−nfu3−/−mutants are embryo lethal. The lack of viablenfu2−/−nfu3−/−mutants posed a serious challenge. To overcome this problem, we characterizednfu2‐1−/−nfu3‐2+/‐andnfu2‐1+/‐nfu3‐2−/−sesquimutants. Simultaneous loss‐of‐function mutations inNFU2andNFU3have an additive effect on the declines of 4Fe‐4S‐containing PSI core subunits. Consequently, the sesquimutants had much lower PSI and PSII activities, much less chlorophyll, and much smaller plant sizes, thannfu2‐1andnfu3‐2single mutants. These observations are consistent with proposed roles of NFU3 and NFU2 in the biogenesis of chloroplastic 4Fe‐4S. By performing spectroscopic and in vitro reconstitution experiments, we found that NFU1 may act as a carrier for chloroplastic 4Fe‐4S and 3Fe‐4S clusters. In line with this hypothesis, loss‐of‐function mutations inNFU1resulted in significant declines in 4Fe‐4S‐ and 3Fe‐4S‐containing chloroplastic proteins. The declines of PSI activity and 4Fe‐4S‐containing PSI core subunits innfu1mutants indicate that PSI is the main target of NFU1 action. The reductions in 4Fe‐4S‐containing PSI core proteins and PSI activity innfu3‐2,nfu2‐1, andnfu1single mutants suggest that all three plastid‐targeted NFU proteins contribute to the biogenesis of chloroplastic 4Fe‐4S clusters. Although different insertion sites of T‐DNA lines may cause variations in phenotypic results, mutation severity could be an indicator of the relative importance of the gene product. Our results are consistent with the hypothesis that NFU3 contributes more than NFU2 and NFU2 contributes more than NFU1 to the production of 4Fe‐4S‐containing PSI core subunits.

    more » « less
  2. The nucleotide binding protein 35 (Nbp35)/cytosolic Fe‐S cluster deficient 1 (Cfd1)/alternative pyrimidine biosynthetic protein C (ApbC) protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe‐S cluster assembly scaffold required for the maturation of Fe‐S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe‐S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal hostMethanococcus maripaludiscontains a [4Fe‐4S] cluster that can be transferred to a [4Fe‐4S] apoprotein. Deletion ofmmp0704fromM. maripaludisdoes not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe‐4S] cluster transfer protein in methanogenic archaea.

    more » « less
  3. Maupin-Furlow, Julie A. (Ed.)
    ABSTRACT Radical S -adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5′-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed. 
    more » « less
  4. Abstract WhiB1 is a monomeric iron–sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe–4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe–4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators. 
    more » « less
  5. Abstract

    7‐Carboxy‐7‐deazaguanine synthase, QueE, catalyzes the radical mediated ring contraction of 6‐carboxy‐5,6,7,8‐tetrahydropterin, forming the characteristic pyrrolopyrimidine core of all 7‐deazaguanine natural products. QueE is a member of theS‐adenosyl‐L‐methionine (AdoMet) radical enzyme superfamily, which harnesses the reactivity of radical intermediates to perform challenging chemical reactions. Members of the AdoMet radical enzyme superfamily utilize a canonical binding motif, a CX3CXϕC motif, to bind a [4Fe‐4S] cluster, and a partial (β/α)6TIM barrel fold for the arrangement of AdoMet and substrates for catalysis. Although variations to both the cluster‐binding motif and the core fold have been observed, visualization of drastic variations in the structure of QueE fromBurkholderia multivoranscalled into question whether a re‐haul of the defining characteristics of this superfamily was in order. Surprisingly, the structure of QueE fromBacillus subtilisrevealed an architecture more reminiscent of the classical AdoMet radical enzyme. With these two QueE structures revealing varying degrees of alterations to the classical AdoMet fold, a new question arises: what is the purpose of these alterations? Here, we present the structure of a third QueE enzyme fromEscherichia coli,which establishes the middle range of the spectrum of variation observed in these homologs. With these three homologs, we compare and contrast the structural architecture and make hypotheses about the role of these structural variations in binding and recognizing the biological reductant, flavodoxin.

    Broader impact statement: We know more about how enzymes are tailored for catalytic activity than about how enzymes are tailored to react with a physiological reductant. Here, we consider structural differences between three 7‐carboxy‐7‐deazaguanine synthases and how these differences may be related to the interaction between these enzymes and their biological reductant, flavodoxin.

    more » « less