skip to main content

Title: Parasitism and host behavior in the context of a changing environment: The Holocene record of the commercially important bivalve Chamelea gallina, northern Italy
Rapid warming and sea-level rise are predicted to be major driving forces in shaping coastal ecosystems and their services in the next century. Though forecasts of the multiple and complex effects of temperature and sea-level rise on ecological interactions suggest negative impacts on parasite diversity, the effect of long term climate change on parasite dynamics is complex and unresolved. Digenean trematodes are complex life cycle parasites that can induce characteristic traces on their bivalve hosts and hold potential to infer parasite host-dynamics through time and space. Previous work has demonstrated a consistent association between sea level rise and increasing prevalence of trematode traces, but a number of fundamental questions remain unanswered about this paleoecological proxy. Here we examine the relationships of host size, shape, and functional morphology with parasite prevalence and abundance, how parasites are distributed across hosts, and how all of these relationships vary through time, using the bivalve Chamelea gallina from a Holocene shallow marine succession in the Po coastal plain. Trematode prevalence increased and decreased in association with the transition from a wave-influenced estuarine system to a wave-dominated deltaic setting. Prevalence and abundance of trematode pits are associated with large host body size, reflecting ontogenetic accumulation of parasites, but temporal trends in median host size do not explain prevalence trends. Ongoing work will test the roles of temperature, salinity, and nutrient availability on trematode parasitism. Parasitized bivalves in one sample were shallower burrowers than their non-parasitized counterparts, suggesting that hosts of trematodes can be more susceptible to their predators, though the effect is ephemeral. Like in living parasite-host systems, trematode-induced malformations are strongly aggregated among hosts, wherein most host individuals harbor very few parasites while a few hosts have many. We interpret trace aggregation to support the assumption that traces are a reliable proxy for trematode parasitism in the fossil record.  more » « less
Award ID(s):
Author(s) / Creator(s):
Vermeij, Geerat J.
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our study uses data from Holocene core samples and modern death assemblages to understand how human-induced environmental change in the northern Adriatic Sea (Italy) may have affected parasite-host dynamics in the economically important bivalve Chamelea gallina. Thirty-one radiocarbon dates confirm temporal distinctness between the periods before and after the onset of significant human influence and confirm that trematode prevalence has decreased by an order of magnitude over the past ∼2 k.y. The median number of parasite-induced pits per bivalve host and parasite aggregation has also decreased significantly, signaling a substantial decrease in the effective population size of digenean trematodes. Gaussian finite mixture modeling of pit size does not support the hypothesis of parasite extinction. Combined, these results indicate the (potentially ongoing) collapse of parasite-host interactions in C. gallina in concert with human influence on the Adriatic and its transition to an urban sea.

    more » « less
  2. Abstract

    Although parasites are increasingly recognized for their ecosystem roles, it is often assumed that free‐living organisms dominate animal biomass in most ecosystems and therefore provide the primary pathways for energy transfer.

    To examine the contributions of parasites to ecosystem energetics in freshwater streams, we quantified the standing biomass of trematodes and free‐living organisms at nine sites in three streams in western Oregon, USA. We then compared the rates of biomass flow from snailsJuga pliciferainto trematode parasites relative to aquatic vertebrate predators (sculpin, cutthroat trout and Pacific giant salamanders).

    The trematode parasite community had the fifth highest dry biomass density among stream organisms (0.40 g/m2) and exceeded the combined biomass of aquatic insects. Only host snails (3.88 g/m2), sculpin (1.11 g/m2), trout (0.73 g/m2) and crayfish (0.43 g/m2) had a greater biomass. The parasite ‘extended phenotype’, consisting of trematode plus castrated host biomass, exceeded the individual biomass of every taxonomic group other than snails. The substantial parasite biomass stemmed from the high snail density and infection prevalence, and the large proportional mass of infected hosts that consisted of trematode tissue (M = 31% per snail).

    Estimates of yearly biomass transfer from snails into trematodes were slightly higher than the combined estimate of snail biomass transfer into the three vertebrate predators. Pacific giant salamanders accounted for 90% of the snail biomass consumed by predators.

    These results demonstrate that trematode parasites play underappreciated roles in the ecosystem energetics of some freshwater streams.

    more » « less
  3. Abstract

    Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host–species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta‐analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non‐parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host–species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically‐transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non‐parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience.

    more » « less
  4. Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator–host–parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy–Gyrodactylusspp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.

    more » « less
  5. Abstract

    Parasites have been increasingly recognized as participants in indirect ecological interactions, including those mediated by parasite-induced changes to host behaviour (trait-mediated indirect interactions or TMIIs). In most documented examples, host behaviours altered by parasites increase susceptibility to predation because the predator is also a host (host-manipulation). Here, we test for a TMII in which a parasitic copepod modifies the predator-prey interaction between a small goby host and several larger predatory fish. Gobies compete for crevices in the reef to avoid predation and goby mortality increases more rapidly with increasing refuge shortage for parasitized gobies than for those free of parasites. We found interactive effects of refuge shortage and parasitism on two behaviours we predicted might be associated with parasite-mediated competition for refuges. First, as refuge-shortage increases, the rate of aggression among gobies increases and parasitism intensifies this interaction. Second, goby proximity to refuges increases as refuges become scarce, but parasitism nullifies this increase. In combination, these parasite-induced changes in behaviour may explain why parasitized gobies are poor competitors for refuges. Because the parasite is not trophically transmitted via host manipulation, these altered behaviours in parasitized gobies are likely coincidental to infection.

    more » « less