skip to main content

Title: Improving conceptual understanding of gas behavior through the use of screencasts and simulations
Abstract Background Engagement with particle-level simulations can help students visualize the motion and interactions of gas particles, thus helping them develop a more scientifically accurate mental model. Such engagement outside of class prior to formal instruction can help meet the needs of students from diverse backgrounds and provide instructors with a common experience upon which to build with further instruction. Yet, even with well-designed scaffolds, students may not attend to the most salient aspects of the simulation. In this case, a screencast where an instructor provides narrated use of the simulation and points students towards the important observations may provide additional benefits. This study, which is part of the larger ChemSims project, investigates the use of simulations and screencasts to support students’ developing understanding of gas properties by examining student learning gains. Results This study indicates that both students manipulating the simulation on their own and those observing a screencast exhibited significant learning gains from pre- to post-assessment. However, students who observed the screencast were more than twice as likely to transition from a macroscopic explanation to a particle-level explanation of gas behavior in answering matched pre- and post-test questions. Eye-tracking studies indicated very similar viewing and usage patterns for more » both groups of students overall, including when using the simulation to answer follow-up questions. Conclusion Significant learning gains by both groups across all learning objectives indicate that either scaffolded screencast or simulation assignments can be used to support student understanding of gas particle behavior and serve as a first experience upon which to build subsequent instruction. There is some indication that the initial use of the screencast may better help students build correct mental models of gas particle behavior. Further, for this simulation, watching the instructor manipulate the simulation in the screencast allowed students to subsequently use the simulation on their own at a level comparable to those students who had manipulated the simulation on their own throughout the assignment, suggesting that the screencast students were not disadvantaged by not initially manipulating the simulation on their own. « less
Authors:
; ; ;
Award ID(s):
1705365 1702592
Publication Date:
NSF-PAR ID:
10229045
Journal Name:
International Journal of STEM Education
Volume:
8
Issue:
1
ISSN:
2196-7822
Sponsoring Org:
National Science Foundation
More Like this
  1. Equilibrium is a challenging concept for many, largely because developing a deep conceptual understanding of equilibrium requires someone to be able to connect the motions and interactions of particles that cannot be physically observed with macroscopic observations. Particle level chemistry animations and simulations can support student connections of particle motion with macroscopic observations, but for topics such as equilibrium additional visuals such as graphs are typically present which add additional complexity. Helping students make sense of such visuals requires careful scaffolding to draw their attention to important features and help them make connections between representations ( e.g. , particle motion and graphical representations). Further, as students enter our classrooms with varying levels of background understanding, they may require more or less time working with such simulations or animations to develop the desired level of conceptual understanding. This paper describes the development and testing of activities that use the PhET simulation “Reactions and Rates” to introduce the concept of equilibrium as a student preclass activity either in the form of directly using the simulation or guided by an instructor through a screencast. The pre-post analysis of the two most recent implementations of these activities indicates that students show improved understanding ofmore »the core ideas underlying equilibrium regardless of instructor, institution, or type of instructional environment (face to face or remote). We also observed that students were more readily able to provide particle level explanations of changes in equilibrium systems as they respond to stresses (such as changes to concentration and temperature) if they have had prior course instruction on collision theory. Lastly, we observed that student answers to explain how an equilibrium will respond to an applied stress more often focus on either initial responses or longer-term stability of concentrations, not on both key aspects.« less
  2. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills withinmore »the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction.« less
  3. Modern 3D printing technology makes it relatively easy and affordable to produce physical models that offer learners concrete representations of otherwise abstract concepts and representations. We hypothesize that integrating hands-on learning with these models into traditionally lecture-dominant courses may help learners develop representational competence, the ability to interpret, switch between, and appropriately use multiple representations of a concept as appropriate for learning, communication and analysis. This approach also offers potential to mitigate difficulties that learners with lower spatial abilities may encounter in STEM courses. Spatial thinking connects to representational competence in that internal mental representations (i.e. visualizations) facilitate work using multiple external representations. A growing body of research indicates well-developed spatial skills are important to student success in many STEM majors, and that students can improve these skills through targeted training. This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with 3D-printed models, build the theoretical basis for how they support learning, and assess their effectiveness in the classroom. We are exploring how such models can support learners’ development of conceptual understanding and representational competence in calculus and engineering statics. We are also exploring howmore »to leverage the model-based activities to embed spatial skills training into these courses. The project is addressing these questions through parallel work piloting model-based learning activities in the classroom and by investigating specific attributes of the activities in lab studies and focus groups. To date we have developed and piloted a mature suite of activities covering a variety of topics for both calculus and statics. Class observations and complementary studies in the psychology lab are helping us develop a theoretical framework for using the models in instruction. Close observation of how students use the models to solve problems and as communication tools helps identify effective design elements. We are administering two spatial skills assessments as pre/post instruments: the Purdue Spatial Visualizations Test: Rotations (PSVT:R) in calculus; and the Mental Cutting Test (MCT) in statics. We are also developing strategies and refining approaches for assessing representational competence in both subject areas. Moving forward we will be using these assessments in intervention and control sections of both courses to assess the effectiveness of the models for all learners and subgroups of learners.« less
  4. Simulations have changed chemistry education by allowing students to visualize the motion and interaction of particles underlying important chemical processes. With kinetics, such visualizations can illustrate how particles interact to yield successful reactions and how changes in concentration and temperature impact the number and success of individual collisions. This study examined how a simulation exploring particle collisions, or screencast employing the same simulation, used as an out-of-class introduction helped develop students’ conceptual understanding of kinetics. Students either manipulated the simulation themselves using guided instructions or watched a screencast in which an expert used the same simulation to complete an assignment. An iterative design approach and analysis of pretest and follow up questions suggests that students in both groups at two different institutions were able to achieve a common base level of success. Instructors can then build upon this common experience when instructing students on collision theory and kinetics. Eye-tracking studies indicate that the simulation and screencast groups engage with the curricular materials in different ways, which combined with student self-report data suggests that the screencast and simulation provide different levels of cognitive demand. This increased time on task suggests that the screencast may hold student interest longer than the simulationmore »alone.« less
  5. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models.more »The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models.« less