We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000
A type-II InAs/AlAs
- Publication Date:
- NSF-PAR ID:
- 10229067
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$ in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ m by adjusting themore »$$\upmu$$ -
Direct evidence for low-energy electron emission following O LVV Auger transitions at oxide surfaces
Abstract Oxygen, the third most abundant element in the universe, plays a key role in the chemistry of condensed matter and biological systems. Here, we report evidence for a hitherto unexplored Auger transition in oxides, where a valence band electron fills a vacancy in the 2s state of oxygen, transferring sufficient energy to allow electron emission. We used a beam of positrons with kinetic energies of
eV to create O 2s holes via matter-antimatter annihilation. This made possible the elimination of the large secondary electron background that has precluded definitive measurements of the low-energy electrons emitted through this process. Ourmore »$$\sim 1$$ -
Abstract Dark matter exists in our Universe, but its nature remains mysterious. The remarkable sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) may be able to solve this mystery. A good dark matter candidate is the ultralight dark photon. Because of its interaction with ordinary matter, it induces displacements on LIGO mirrors that can lead to an observable signal. In a study that bridges gravitational wave science and particle physics, we perform a direct dark matter search using data from LIGO’s first (O1) data run, as opposed to an indirect search for dark matter via its production of gravitational waves.more »
-
Abstract The production of the
particle in heavy-ion collisions has been contemplated as an alternative probe of its internal structure. To investigate this conjecture, we perform transport calculations of the$$X(3872)$$ through the fireball formed in nuclear collisions at the LHC. Within a kinetic-rate equation approach as previously used for charmonia, the formation and dissociation of the$$X(3872)$$ is controlled by two transport parameters,$$X(3872)$$ i.e. , its inelastic reaction rate and thermal-equilibrium limit in the evolving hot QCD medium. While the equilibrium limit is controlled by the charm production cross section in primordial nucleon-nucleon collisions (together with the spectra of charm states in the medium), the structuremore » -
Abstract Massive gully land consolidation projects, launched in China’s Loess Plateau, aim to restore 2667
agricultural lands in total by consolidating 2026 highly eroded gullies. This effort represents a social engineering project where the economic development and livelihood of the farming families are closely tied to the ability of these emergent landscapes to provide agricultural services. Whether these ‘time zero’ landscapes have the resilience to provide a sustainable soil condition such as soil organic carbon (SOC) content remains unknown. By studying two watersheds, one of which is a control site, we show that the consolidated gully serves as an enhanced carbonmore »$$\mathrm{km}^2$$