Recent years have seen growing interest in utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities in K-12 education. At the same time, there is increasing awareness of the need to engage students as young as elementary school in complex topics such as physical science and computational thinking. Building on previous research investigating block-based programming activities for storytelling, we present an approach to block-based programming for interactive digital storytelling to engage upper elementary students (ages 9 to 10) in computational thinking and narrative skill development. We describe both the learning environment that combines block-based narrative programming with a rich, interactive visualization engine designed to produce animations of student generated stories, as well as an analysis of students using the system to create narratives. Student generated stories are evaluated from both a story quality perspective as well as from their ability to communicate and demonstrate computational thinking and physical science concepts and practices. We also explore student behaviors during the story creation process and discuss potential improvements for future interventions.
more »
« less
Toward a Block-Based Programming Approach to Interactive Storytelling for Upper Elementary Students
Developing narrative and computational thinking skills is crucial for K-12 student learning. A growing number of K-12 teachers are utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities for a variety of domains, including history and science. At the same time, there is increasing awareness of the need to engage K-12 students in computational thinking, including elementary school students. Given the challenges that the syntax of text-based programming languages poses for even novice university-level learners, block-based programming languages have emerged as an effective tool for introducing computational thinking to elementary-level students. Leveraging the unique affordances of narrative and computational thinking offers significant potential for student learning; however, integrating them presents significant challenges. In this paper, we describe initial work toward solving this problem by introducing an approach to block-based programming for interactive storytelling to engage upper elementary students (ages 9 to 11) in computational thinking and narrative skill development. Leveraging design principles and best practices from prior research on elementary-grade block-based programming and digital storytelling, we propose a set of custom blocks enabling learners to create interactive narratives. We describe both the process used to derive the custom blocks, including their alignment with elements of interactive narrative and with specific computational thinking curricular goals, as well as lessons learned from students interacting with a prototype learning environment utilizing the block-based programming approach.
more »
« less
- Award ID(s):
- 1921495
- PAR ID:
- 10229112
- Date Published:
- Journal Name:
- International Conference on Interactive Digital Storytelling
- Page Range / eLocation ID:
- 111-119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent years have seen a growing recognition of the importance of enabling K-12 students to engage in computational thinking, particularly in elementary grades where students' dispositions toward STEM are developing. Block-based programming has emerged as an effective tool for engaging these novice learners in computational thinking. At the same time, digital storytelling has emerged as a promising avenue for creating motivating problem-solving scenarios that engage students in science investigations. Although block-based programming and digital storytelling are in many ways synergistic, there is a lingering question of how to design block-based languages at an age-appropriate level to enable effective and engaging storytelling. In this work, we review design principles from prior block-based and digital storytelling systems as well as propose the design of block-based programming language features to enable the creation of rich, interactive science narratives by upper elementary students.more » « less
-
Recent years have seen growing awareness of the potential digital storytelling brings to creating engaging K-12 learning experiences. By fostering students’ interdisciplinary knowledge and skills, digital storytelling holds great promise for realizing positive impacts on student learning in language arts as well as STEM subjects. In parallel, researchers and practitioners increasingly acknowledge the importance of computational thinking in supporting K-12 students’ problem solving across subjects and grade levels, including science and elementary school. Integrating the unique affordances of digital storytelling and computational thinking offers significant potential; however, careful attention must be given to ensure students and teachers are properly supported and not overwhelmed. In this paper, we present our work on a narrative-centered learning environment that engages upper elementary students (ages 9 to 11) in computational thinking and physical science through the creation of interactive science narratives. Leveraging log data from a pilot study with 28 students using the learning environment, we analyze the narrative programs students created across multiple dimensions to better understand the nature of the resulting narratives. Furthermore, we examine automating this analysis using artificial intelligence techniques to support real-time adaptive feedback. Results indicate that the learning environment enabled students to create interactive digital stories demonstrating their understanding of physical science, computational thinking, and narrative concepts, while the automated assessment techniques showed promise for enabling real-time feedback and support.more » « less
-
Digital storytelling, which combines traditional storytelling with digital tools, has seen growing popularity as a means of creating motivating problem-solving activities in K-12 education. Though an attractive potential solution to integrating language arts skills across topic areas such as computational thinking and science, better understanding of how to structure and support these activities is needed to increase adoption by teachers. Building on prior research on block-based programming for interactive storytelling, we present initial results from a study of 28 narrative programs created by upper elementary students that were collected in both classroom and extracurricular contexts. The narrative programs are evaluated across multiple dimensions to better understand the types of narrative programs being created by the students, characteristics of the students who created the narratives, and what types of support could most benefit the students in their narrative program construction. In addition to analyzing the student-created narrative programs, we also provide recommendations for promising system-generated and instructor-led supports.more » « less
-
Digital storytelling in combination with makerspace activities holds significant potential to engage students and support their learning. When students play, such as through makerspace activities, they engage in critical thinking and problem solving. In our work, we are joining storytelling with computational thinking (CT) practices, physical science exploration, and makerspace activities through a digital narrative-centered learning environment for elementary school. Learning within the environment is undergirded by makerspace play that centers on finding solutions to an open problem—how can stranded scientists on a remote island power up their village using found materials? The learning environment supports students’ CT practices and science content learning as they use and problem solve with physical energy conversion kits, culminating in their creation of an interactive story. We present here a brief case study of the ways students’ experiences with makerspace play support their problem solving and storytelling.more » « less