<sc>A</sc>bstract Freshwater systems are critical to life on earth, yet they are threatened by the increasing rate of synthetic chemical pollution. Current predictions of the effects of synthetic chemicals on freshwater ecosystems are hampered by the sheer number of chemical contaminants entering aquatic systems, the diversity of organisms inhabiting these systems, the myriad possible direct and indirect effects resulting from these combinations, and uncertainties concerning how contaminants might alter ecosystem metabolism via changes in biodiversity. To address these knowledge gaps, we conducted a mesocosm experiment that elucidated the responses of ponds composed of phytoplankton and zooplankton to standardized concentrations of 12 pesticides, nested within four pesticide classes, and two pesticide types. We show that the effects of the pesticides on algae were consistent within herbicides and insecticides and that responses of over 70 phytoplankton species and genera were consistent within broad taxonomic groups. Insecticides generated top‐down effects on phytoplankton community composition and abundance, which were associated with persistent increases in ecosystem respiration. Insecticides had direct toxic effects on cladocerans, which led to competitive release of copepods. These changes in the zooplankton community led to a decrease in green algae and a modest increase in diatoms. Herbicides did not change phytoplankton composition but reduced total phytoplankton abundance. This reduction in phytoplankton led to short‐term decreases in ecosystem respiration. Given that ponds release atmospheric carbon and that worldwide pesticide pollution continues to increase exponentially, scientists and policy makers should pay more attention to the ways pesticides alter the carbon cycle in ponds via changes in communities, as demonstrated by our results. Our results show that these predictions can be simplified by grouping pesticides into types and species into functional groups. Adopting this approach provides an opportunity to improve the efficiency of risk assessment and mitigation responses to global change.
more »
« less
Consistent effects of pesticides on community structure and ecosystem function in freshwater systems
Abstract Predicting ecological effects of contaminants remains challenging because of the sheer number of chemicals and their ambiguous role in biodiversity-ecosystem function relationships. We evaluate responses of experimental pond ecosystems to standardized concentrations of 12 pesticides, nested in four pesticide classes and two pesticide types. We show consistent effects of herbicides and insecticides on ecosystem function, and slightly less consistent effects on community composition. Effects of pesticides on ecosystem function are mediated by alterations in the abundance and community composition of functional groups. Through bottom-up effects, herbicides reduce respiration and primary productivity by decreasing the abundance of phytoplankton. The effects of insecticides on respiration and primary productivity of phytoplankton are driven by top-down effects on zooplankton composition and abundance, but not richness. By demonstrating consistent effects of pesticides on communities and ecosystem functions and linking pesticide-induced changes in functional groups of organisms to ecosystem functions, the study suggests that ecological risk assessment of registered chemicals could be simplified to synthetic chemical classes or types and groups of organisms with similar functions and chemical toxicities.
more »
« less
- PAR ID:
- 10229127
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pesticide pollution can alter parasite transmission, but scientists are unaware if effects of pesticides on parasite exposure and host susceptibility (i.e. infection risk given exposure) can be generalised within a community context. Using replicated temperate pond communities, we evaluate effects of 12 pesticides, nested in four pesticide classes (chloroacetanilides, triazines, carbamates organophosphates) and two pesticide types (herbicides, insecticides) applied at standardised environmental concentrations on larval amphibian exposure and susceptibility to trematode parasites. Most of the variation in exposure and susceptibility occurred at the level of pesticide class and type, not individual compounds. The organophosphate class of insecticides increased snail abundance (first intermediate host) and thus trematode exposure by increasing mortality of snail predators (top–down mechanism). While a similar pattern in snail abundance and trematode exposure was observed with triazine herbicides, this effect was driven by increases in snail resources (periphytic algae, bottom–up mechanism). Additionally, herbicides indirectly increased host susceptibility and trematode infections by (1) increasing time spent in susceptible early developmental stages and (2) suppressing tadpole immunity. Understanding generalisable effects associated with contaminant class and type on transmission is critical in reducing complexities in predicting disease dynamics in at‐risk host populations.more » « less
-
Abstract The Hawaii Ocean Time‐series (HOT) at Station ALOHA (22.75°N, 158°W) in the North Pacific Subtropical Gyre (NPSG) serves as a critical vantage point for observing plankton biomass production and its ecological implications. However, the HOT program's near‐monthly sampling frequency does not capture shorter time scale variability in phytoplankton populations. To address this gap, we deployed the SeaFlow flow cytometer for continuous monitoring during HOT cruises from 2014 to 2021. This approach allowed us to examine variations in the surface abundance and cell carbon content of specific phytoplankton groups: the cyanobacteriaProchlorococcus,Synechococcus, andCrocosphaeraas well as a range of small eukaryotic phytoplankton ( 5 μm). Our data showed that daily to monthly variability inProchlorococcusandSynechococcusabundance matches seasonal and interannual variability, while small eukaryotic phytoplankton andCrocosphaerashowed the highest seasonal and interannual fluctuations. The study also found that eukaryotic phytoplankton andCrocosphaerahad higher median cellular growth rates (0.076 and , respectively) compared toProchlorococcusandSynechococcus(0.037 and , respectively). These variances in abundance and growth rates indicate that shifts in the community structure significantly impact primary productivity in the NPSG. Our results underscore the importance of daily to monthly phytoplankton dynamics in ecosystem function and carbon cycling.more » « less
-
Abstract The global pesticide complex has transformed over the past two decades, but social science research has not kept pace. The rise of an enormous generics sector, shifts in geographies of pesticide production, and dynamics of agrarian change have led to more pesticide use, expanding to farm systems that hitherto used few such inputs. Declining effectiveness due to pesticide resistance and anemic institutional support for non-chemical alternatives also have driven intensification in conventional systems. As an inter-disciplinary network of pesticide scholars, we seek to renew the social science research agenda on pesticides to better understand this suite of contemporary changes. To identify research priorities, challenges, and opportunities, we develop the pesticide complex as a heuristic device to highlight the reciprocal and iterative interactions among agricultural practice, the agrochemical industry, civil society-shaped regulatory actions, and contested knowledge of toxicity. Ultimately, collaborations among social scientists and across the social and biophysical sciences can illuminate recent transformations and their uneven socioecological effects. A reinvigorated critical scholarship that embraces the multifaceted nature of pesticides can identify the social and ecological constraints that drive pesticide use and support alternatives to chemically driven industrial agriculture.more » « less
-
Longcore, Travis (Ed.)Mounting evidence shows overall insect abundances are in decline globally. Habitat loss, climate change, and pesticides have all been implicated, but their relative effects have never been evaluated in a comprehensive large-scale study. We harmonized 17 years of land use, climate, multiple classes of pesticides, and butterfly survey data across 81 counties in five states in the US Midwest. We find community-wide declines in total butterfly abundance and species richness to be most strongly associated with insecticides in general, and for butterfly species richness the use of neonicotinoid-treated seeds in particular. This included the abundance of the migratory monarch (Danaus plexippus), whose decline is the focus of intensive debate and public concern. Insect declines cannot be understood without comprehensive data on all putative drivers, and the 2015 cessation of neonicotinoid data releases in the US will impede future research.more » « less
An official website of the United States government

