skip to main content


Title: A unifying type-theory for higher-order (amortized) cost analysis
This paper presents λ-amor, a new type-theoretic framework for amortized cost analysis of higher-order functional programs and shows that existing type systems for cost analysis can be embedded in it. λ-amor introduces a new modal type for representing potentials – costs that have been accounted for, but not yet incurred, which are central to amortized analysis. Additionally, λ-amor relies on standard type-theoretic concepts like affineness, refinement types and an indexed cost monad. λ-amor is proved sound using a rather simple logical relation. We embed two existing type systems for cost analysis in λ-amor showing that, despite its simplicity, λ-amor can simulate cost analysis for different evaluation strategies (call-by-name and call-by-value), in different styles (effect-based and coeffect-based), and with or without amortization. One of the embeddings also implies that λ-amor is relatively complete for all terminating PCF programs.  more » « less
Award ID(s):
2040249 2040222 1845803 1718220 1845514 1812876
NSF-PAR ID:
10229169
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
POPL
ISSN:
2475-1421
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present calf , a c ost- a ware l ogical f ramework for studying quantitative aspects of functional programs. Taking inspiration from recent work that reconstructs traditional aspects of programming languages in terms of a modal account of phase distinctions , we argue that the cost structure of programs motivates a phase distinction between intension and extension . Armed with this technology, we contribute a synthetic account of cost structure as a computational effect in which cost-aware programs enjoy an internal noninterference property: input/output behavior cannot depend on cost. As a full-spectrum dependent type theory, calf presents a unified language for programming and specification of both cost and behavior that can be integrated smoothly with existing mathematical libraries available in type theoretic proof assistants. We evaluate calf as a general framework for cost analysis by implementing two fundamental techniques for algorithm analysis: the method of recurrence relations and physicist’s method for amortized analysis . We deploy these techniques on a variety of case studies: we prove a tight, closed bound for Euclid’s algorithm, verify the amortized complexity of batched queues, and derive tight, closed bounds for the sequential and parallel complexity of merge sort, all fully mechanized in the Agda proof assistant. Lastly we substantiate the soundness of quantitative reasoning in calf by means of a model construction. 
    more » « less
  2. Automatic amortized resource analysis (AARA) is a type-based technique for inferring concrete (non-asymptotic) bounds on a program's resource usage. Existing work on AARA has focused on bounds that are polynomial in the sizes of the inputs. This paper presents and extension of AARA to exponential bounds that preserves the benefits of the technique, such as compositionality and efficient type inference based on linear constraint solving. A key idea is the use of the Stirling numbers of the second kind as the basis of potential functions, which play the same role as the binomial coefficients in polynomial AARA. To formalize the similarities with the existing analyses, the paper presents a general methodology for AARA that is instantiated to the polynomial version, the exponential version, and a combined system with potential functions that are formed by products of Stirling numbers and binomial coefficients. The soundness of exponential AARA is proved with respect to an operational cost semantics and the analysis of representative example programs demonstrates the effectiveness of the new analysis. 
    more » « less
  3. This article presents a type-based analysis for deriving upper bounds on the expected execution cost of probabilistic programs. The analysis is naturally compositional, parametric in the cost model, and supports higher-order functions and inductive data types. The derived bounds are multivariate polynomials that are functions of data structures. Bound inference is enabled by local type rules that reduce type inference to linear constraint solving. The type system is based on the potential method of amortized analysis and extends automatic amortized resource analysis (AARA) for deterministic programs. A main innovation is that bounds can contain symbolic probabilities, which may appear in data structures and function arguments. Another contribution is a novel soundness proof that establishes the correctness of the derived bounds with respect to a distribution-based operational cost semantics that also includes nontrivial diverging behavior. For cost models like time, derived bounds imply termination with probability one. To highlight the novel ideas, the presentation focuses on linear potential and a core language. However, the analysis is implemented as an extension of Resource Aware ML and supports polynomial bounds and user defined data structures. The effectiveness of the technique is evaluated by analyzing the sample complexity of discrete distributions and with a novel average-case estimation for deterministic programs that combines expected cost analysis with statistical methods. 
    more » « less
  4. This article introduces a novel system for deriving upper bounds on the heap-space requirements of functional programs with garbage collection. The space cost model is based on a perfect garbage collector that immediately deallocates memory cells when they become unreachable. Heap-space bounds are derived using type-based automatic amortized resource analysis (AARA), a template-based technique that efficiently reduces bound inference to linear programming. The first technical contribution of the work is a new operational cost semantics that models a perfect garbage collector. The second technical contribution is an extension of AARA to take into account automatic deallocation. A key observation is that deallocation of a perfect collector can be modeled with destructive pattern matching if data structures are used in a linear way. However, the analysis uses destructive pattern matching to accurately model deallocation even if data is shared. The soundness of the extended AARA with respect to the new cost semantics is proven in two parts via an intermediate linear cost semantics. The analysis and the cost semantics have been implemented as an extension to Resource Aware ML (RaML). An experimental evaluation shows that the system is able to derive tight symbolic heap-space bounds for common algorithms. Often the bounds are asymptotic improvements over bounds that RaML derives without taking into account garbage collection. 
    more » « less
  5. null (Ed.)
    We present a novel method for working with the physicist's method of amortized resource analysis, which we call the quantum physicist's method. These principles allow for more precise analyses of resources that are not monotonically consumed, like stack. This method takes its name from its two major features, worldviews and resource tunneling, which behave analogously to quantum superposition and quantum tunneling. We use the quantum physicist's method to extend the Automatic Amortized Resource Analysis (AARA) type system, enabling the derivation of resource bounds based on tree depth. In doing so, we also introduce remainder contexts, which aid bookkeeping in linear type systems. We then evaluate this new type system's performance by bounding stack use of functions in the Set module of OCaml's standard library. Compared to state-of-the-art implementations of AARA, our new system derives tighter bounds with only moderate overhead. 
    more » « less