skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic Outcomes of Haploid Induction Crosses in Potato ( Solanum tuberosum L.)
Abstract The challenges of breeding autotetraploid potato (Solanum tuberosum) have motivated the development of alternative breeding strategies. A common approach is to obtain uniparental dihaploids from a tetraploid of interest through pollination with S. tuberosum Andigenum Group (formerly S. phureja) cultivars. The mechanism underlying haploid formation of these crosses is unclear, and questions regarding the frequency of paternal DNA transmission remain. Previous reports have described aneuploid and euploid progeny that, in some cases, displayed genetic markers from the haploid inducer (HI). Here, we surveyed a population of 167 presumed dihaploids for large-scale structural variation that would underlie chromosomal addition from the HI, and for small-scale introgression of genetic markers. In 19 progeny, we detected 10 of the 12 possible trisomies and, in all cases, demonstrated the noninducer parent origin of the additional chromosome. Deep sequencing indicated that occasional, short-tract signals appearing to be of HI origin were better explained as technical artifacts. Leveraging recurring copy number variation patterns, we documented subchromosomal dosage variation indicating segregation of polymorphic maternal haplotypes. Collectively, 52% of the assayed chromosomal loci were classified as dosage variable. Our findings help elucidate the genomic consequences of potato haploid induction and suggest that most potato dihaploids will be free of residual pollinator DNA.  more » « less
Award ID(s):
1444612
PAR ID:
10229193
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Genetics
Volume:
214
Issue:
2
ISSN:
1943-2631
Page Range / eLocation ID:
369 to 380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In cultivated tetraploid potato (Solanum tuberosum), reduction to diploidy (dihaploidy) allows for hybridization to diploids and introgression breeding and may facilitate the production of inbreds. Pollination with haploid inducers yields maternal dihaploids, as well as triploid and tetraploid hybrids. Dihaploids may result from parthenogenesis, entailing the development of embryos from unfertilized eggs, or genome elimination, entailing missegregation and the loss of paternal chromosomes. A sign of genome elimination is the occasional persistence of haploid inducer DNA in some dihaploids. We characterized the genomes of 919 putative dihaploids and 134 hybrids produced by pollinating tetraploid clones with three haploid inducers: IVP35, IVP101, and PL-4. Whole-chromosome or segmental aneuploidy was observed in 76 dihaploids, with karyotypes ranging from 2n=2x-1=23 to 2n=2x+3=27. Of the additional chromosomes in 74 aneuploids, 66 were from the non-inducer parent and 8 from the inducer parent. Overall, we detected full or partial chromosomes from the haploid inducer parent in 0.87% of the dihaploids, irrespective of parental genotypes. Chromosomal breaks commonly affected the paternal genome in the dihaploid and tetraploid progeny, but not in the triploid progeny, correlating instability to sperm ploidy and to haploid induction. The residual haploid inducer DNA discovered in the progeny is consistent with genome elimination as the mechanism of haploid induction. 
    more » « less
  2. Abstract Dihaploid production from elite tetraploid cultivars is key to both traditional and novel breeding approaches that seek to simplify potato genetics. For this purpose, efficient and widely compatible haploid inducers (HIs) are needed. We compared PL-4, a new HI developed at the International Potato Center, to known HIs IvP101 and IvP35. By pollination of elite tetraploid breeding lines, we showed that PL-4 performed significantly better and had a homogeneous response regardless of the genetic background of the pistillate parents, on the most important efficiency traits—number of dihaploids per 100 fruits and haploid induction rate. Moreover, PL-4 exhibited a reduced proportion of hybrid seeds, a convenient trait for efficient screening. In this context, we recommend PL-4 as an enhanced HI for the potato breeding community. 
    more » « less
  3. Abstract Large-scale structural variations, such as chromosomal translocations, can have profound effects on fitness and phenotype, but are difficult to identify and characterize. Here, we describe a simple and effective method aimed at identifying translocations using only the dosage of sequence reads mapped on the reference genome. We binned reads on genomic segments sized according to sequencing coverage and identified instances when copy number segregated in populations. For each dosage-polymorphic 1 Mb bin, we tested independence, effectively an apparent linkage disequilibrium (LD), with other variable bins. In nine potato (Solanum tuberosum) dihaploid families translocations affecting pericentromeric regions were common and in two cases were due to genomic misassembly. In two populations, we found evidence for translocation affecting euchromatic arms. In cv. PI 310467, a nonreciprocal translocation between chromosomes (chr.) 7 and 8 resulted in a 5–3 copy number change affecting several Mb at the respective chromosome tips. In cv. “Alca Tarma,” the terminal arm of chr. 4 translocated to the tip of chr. 1. Using oligonucleotide-based fluorescent in situ hybridization painting probes (oligo-FISH), we tested and confirmed the predicted arrangement in PI 310467. In 192 natural accessions of Arabidopsis thaliana, dosage haplotypes tended to vary continuously and resulted in higher noise, while apparent LD between pericentromeric regions suggested the effect of repeats. This method, LD-CNV, should be useful in species where translocations are suspected because it tests linkage without the need for genotyping. 
    more » « less
  4. Although the reference genome of Solanum tuberosum Group Phureja double-monoploid (DM) clone is available, knowledge on the genetic diversity of the highly heterozygous tetraploid Group Tuberosum, representing most cultivated varieties, remains largely unexplored. This lack of knowledge hinders further progress in potato research. In conducted investigation, we first merged and manually curated the two existing partially-overlapping DM genome-based gene models, creating a union of genes in Phureja scaffold. Next, we compiled available and newly generated RNA-Seq datasets (cca. 1.5 billion reads) for three tetraploid potato genotypes (cultivar Désirée, cultivar Rywal, and breeding clone PW363) with diverse breeding pedigrees. Short-read transcriptomes were assembled using several de novo assemblers under different settings to test for optimal outcome. For cultivar Rywal, PacBio Iso-Seq full-length transcriptome sequencing was also performed. EvidentialGene redundancy-reducing pipeline complemented with in-house developed scripts was employed to produce accurate and complete cultivar-specific transcriptomes, as well as to attain the pan-transcriptome. The generated transcriptomes and pan-transcriptome represent a valuable resource for potato gene variability exploration, high-throughput omics analyses, and breeding programmes. 
    more » « less
  5. Meiotic recombination between homologous chromosomes is vital for maximizing genetic variation among offspring. However, sex-determining regions are often rearranged and blocked from recombination. It remains unclear whether rearrangements or other mechanisms might be responsible for recombination suppression. Here, we uncover that the deficiency of the DNA cytosine methyltransferase DNMT1 in the green algaChlamydomonas reinhardtiicauses anomalous meiotic recombination at the mating-type locus (MT), generating haploid progeny containing bothplusandminusmating-type markers due to crossovers withinMT. The deficiency of a histone methyltransferase for H3K9 methylation does not lead to anomalous recombination. These findings suggest that DNA methylation, rather than rearrangements or histone methylation, suppresses meiotic recombination, revealing an unappreciated biological function for DNA methylation in eukaryotes. 
    more » « less