skip to main content


Title: Hidden order across online extremist movements can be disrupted by nudging collective chemistry
Abstract

Disrupting the emergence and evolution of potentially violent online extremist movements is a crucial challenge. Extremism research has analyzed such movements in detail, focusing on individual- and movement-level characteristics. But are there system-level commonalities in the ways these movements emerge and grow? Here we compare the growth of the Boogaloos, a new and increasingly prominent U.S. extremist movement, to the growth of online support for ISIS, a militant, terrorist organization based in the Middle East that follows a radical version of Islam. We show that the early dynamics of these two online movements follow the same mathematical order despite their stark ideological, geographical, and cultural differences. The evolution of both movements, across scales, follows a single shockwave equation that accounts for heterogeneity in online interactions. These scientific properties suggest specific policies to address online extremism and radicalization. We show how actions by social media platforms could disrupt the onset and ‘flatten the curve’ of such online extremism by nudging its collective chemistry. Our results provide a system-level understanding of the emergence of extremist movements that yields fresh insight into their evolution and possible interventions to limit their growth.

 
more » « less
Award ID(s):
2030694
NSF-PAR ID:
10229581
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As human and automated sensor networks collect increasingly massive volumes of animal observations, new opportunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observations, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many locations and times it is possible to infer spatially continuous population-level movements. Population-level movement characterizes the aggregated movement of individuals comprising a population, such as range contractions, expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A desire to model population movements from such forms of occurrence data has led to an evolving field that has created new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observations. The insights generated from the growth of population-level movement research can complement the insights from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discuss the latest approaches for utilizing them in population-level movement analyses, and highlight studies where such analyses have provided ecological insights. We outline the conceptual approaches and common methodological steps to infer movements from spatially distributed occurrence data that currently exist for terrestrial animals, though similar approaches may be applicable to plants, freshwater, or marine organisms.

     
    more » « less
  2. Abstract

    Animal movement and dispersal are key factors in population dynamics and support complex ecosystem processes like cross‐boundary subsidies. Juvenile dispersal is an important mechanism for many species and often involves navigation in unfamiliar habitats. For species that metamorphose, such as amphibians, this transition from aquatic to terrestrial environments involves the growth and use of new morphological traits (e.g., legs). These traits strongly impact the fundamental ability of an organism to move in novel landscapes, but innate behaviors can regulate choices that result in the realized movements expressed. By assessing the integrative role of morphology and behavior, we can improve our understanding of juvenile movement, particularly in understudied organisms like amphibians. We assessed the roles of morphological (snout‐vent length and relative leg length) and performance (maximal jump distance) traits in shaping the free movement paths, measured through fluorescent powder tracking, in three anuran species, Pacific treefrog (Hyliola regilla), Western toad (Anaxyrus boreas), and Cascades frog (Rana cascadae). We standardized the measurement of these traits to compare the relative role of species' innate differences versus physical traits in shaping movement. Innate differences, captured by species identity, were the most significant factor influencing movement paths via total movement distance and path sinuosity. Relative leg length was an important contributor but significantly interacted with species identity. Maximal jump performance, which was significantly predicted by morphological traits, was not an important factor in movement behavior relative to species identity. The importance of species identity and associated behavioral differences in realized movement provide evidence for inherent species differences being central to the dispersal and movement of these species. This behavior may stem from niche partitioning of these sympatric species, yet it also calls into question assumptions generalizing anuran movement behavior. These species‐level effects are important in framing differences as past research is applied in management planning.

     
    more » « less
  3. null (Ed.)
    An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks. In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery. 
    more » « less
  4. Abstract

    Plants are often dispersal limited relying on passive or active agents to find suitable microhabitats for germination. Seeds of pioneer tree species, for example, require light gaps for growth but have short median dispersal distances and often do not provide a food reward to encourage animal dispersal.Zanthoxylum ekmaniiseeds are frequently moved by ants but evaluating the effectiveness of ant‐mediated seed removal requires knowledge of the species moving the seeds, how far they are moved, and the deposition site. To assess the effectiveness of ants as seed dispersers ofZ.ekmanii, we utilized the seed dispersal effectiveness framework. We tracked the movement of seeds from caches on the forest floor, revealing that foragers ofEctatomma ruidummoved 32.8% of seeds an average first distance of 99.8 cm with 68.3% of those seeds taken into a colony. The quality of deposition location was assessed using a seedling emergence study where freshly germinated seeds were buried at different depths. Seedlings were primarily able to emerge from the shallowest depths. Wax castings ofE.ruidumcolonies demonstrated that seeds brought into the colony were deposited in chambers that had larvae present and experienced more damage than seeds unhandled by ants. Foragers, however, did not have a strong enough bite force to ruptureZ.ekmaniiseeds likely because their muscle morphology is not structured to maximize force generation. Overall,E.ruidummay help fine tune deposition location, incorporating seeds into the topsoil, though few seeds will likely emerge if soil bioturbation is low.

    Abstract in Spanish is available with online material

     
    more » « less
  5. ABSTRACT

    We present numerical simulation results for the propagation of Alfvén waves in the charge starvation regime. This is the regime where the plasma density is below the critical value required to supply the current for the wave. We analyse a conservative scenario where Alfvén waves pick up charges from the region where the charge density exceeds the critical value and advect them along at a high Lorentz factor. The system consisting of the Alfvén wave and charges being carried with it, which we call charge-carrying Alfvén wave (CC-AW), moves through a medium with small, but non-zero, plasma density. We find that the interaction between CC-AW and the stationary medium has a two-stream like instability which leads to the emergence of a strong electric field along the direction of the unperturbed magnetic field. The growth rate of this instability is of the order of the plasma frequency of the medium encountered by the CC-AW. Our numerical code follows the system for hundreds of wave periods. The numerical calculations suggest that the final strength of the electric field is of the order of a few per cent of the AW amplitude. Little radiation is produced by the sinusoidally oscillating currents associated with the instability during the linear growth phase. However, in the non-linear phase, the fluctuating current density produces strong EM radiation near the plasma frequency and limits the growth of the instability.

     
    more » « less