skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data report: late Pliocene planktonic foraminifer assemblages from IODP Holes U1443B, U1443C, and U1445A
Planktonic foraminifers are key to reconstructing the paleoceanography and monsoon history of the Bay of Bengal. We examined foraminifers from International Ocean Discovery Program Site U1443 on the Ninetyeast Ridge and Site U1445 in the northwest Bay of Bengal, documented the planktonic assemblages, and compared four measures of sample preservation. These samples contain typical late Pliocene assemblages, although the upper stratigraphic limits of Sphaeroidinellopsis seminulina and Dentoglobigerina altispira are more similar to those of the Atlantic Ocean than of the Pacific Ocean. Observations of sample fragmentation and test preservation are more useful than numerical calculations based on foraminifer abundances in describing sample dissolution and offer a consistent means to compare samples from different sites in the Bay of Bengal.  more » « less
Award ID(s):
1326927
PAR ID:
10229725
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Volume:
353
ISSN:
2377-3189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Because the western equatorial Pacific Ocean is famous for its calcareous oozes, various biostratigraphic studies on planktonic foraminifers and calcareous nannofossils have been conducted in this region. As a result, western equatorial Pacific Ocean–based studies have established that the tropical Pacific region drives the atmospheric circulation by high seawater temperature, strongly influencing the global climate. Based on this finding, a number of sites were cored in this region during International Ocean Discovery Program (IODP) Expedition 363. Shipboard results unexpectedly revealed that radiolarians are abundant and well preserved in sediment from Eauripik Rise Site U1490 between 220 and 350 m core depth below seafloor, Method A (CSF-A), within an interval of calcareous ooze composed primarily of calcareous nannofossils and foraminifers. Paleomagnetic reversal event and calcareous nannofossil and planktonic foraminiferal bioevents suggested that the interval from 220 to 350 m CSF-A corresponded to the Middle to Early Miocene. This study investigated radiolarian assemblages and the biostratigraphy of core catcher samples obtained from Hole U1490A between 250 and 350 m CSF-A. Notably, the last occurrence (LO) of Artophormis gracilis (Riedel) was confirmed at ~338 m CSF-A, demonstrating that the base of the site is older than 22.6 Ma in age. Additionally, the first occurrence (16.9 Ma) and LO (13.9 Ma) of Calocyclas costata Riedel were identified at 246.7 and 227.8 m CSF-A, respectively, and the LO of Didymocyrtis prismatica (Haeckel), indicating an age of 17.7 Ma, was recorded at 258.5 m CSF-A. We also calculate preliminary sedimentation rates based on the Early Miocene radiolarian biostratigraphy and provide taxonomic notes on radiolarian species. 
    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 353 drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gas concentrations, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation above the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in key regions where these signals are the strongest and best preserved. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 353 (29 November 2014–29 January 2015) drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. Recovery averaged 97%, including coring with the advanced piston corer, half-length advanced piston corer, and extended core barrel systems. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gases, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation to the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in key regions where these signals are the strongest and best preserved. Salinity changes at IODP Sites U1445 and U1446 (northeast Indian margin) result from direct precipitation as well as runoff from the Ganges-Brahmaputra river complex and the many river basins of peninsular India. Salinity changes at IODP Sites U1447 and U1448 (Andaman Sea) result from direct precipitation and runoff from the Irrawaddy and Salween river basins. IODP Site U1443 (Ninetyeast Ridge) is an open-ocean site with a modern surface water salinity very near the global mean but is documented to have recorded changes in monsoonal circulation over orbital to tectonic timescales. This site serves as an anchor for establishing the extent to which the north to south (19°N to 5°N) salinity gradient changes over time. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 353 (29 November 2014–29 January 2015) drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. Recovery averaged 97%, including coring with the advanced piston corer, half-length advanced piston corer, and extended core barrel systems. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gas concentrations, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation above the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in key regions where these signals are the strongest and best preserved. Salinity changes at IODP Sites U1445 and U1446 (northeast Indian margin) result from direct precipitation as well as runoff from the Ganges-Brahmaputra river complex and the many river basins of peninsular India. Salinity changes at IODP Sites U1447 and U1448 (Andaman Sea) result from direct precipitation and runoff from the Irrawaddy and Salween river basins. IODP Site U1443 (Ninetyeast Ridge) is an open-ocean site with modern surface water salinity very near to the global mean but is documented to have recorded changes in monsoonal circulation over orbital to tectonic timescales. This site serves as an anchor for establishing the extent to which the north to south (19°N to 5°N) salinity gradient changes over time. 
    more » « less
  5. null (Ed.)
    International Ocean Discovery Program Expedition 363 Sites U1489 and U1490, located in the Western Pacific Warm Pool, contain diverse assemblages of planktonic foraminifers. We examined and imaged specimens of Miocene Dentoglobigerina and Globoquadrina to determine the presence or absence of spine holes and pustules in their wall texture. A total of 15 specimens were observed across six species, including Dentoglobigerina baroemoenensis, Dentoglobigerina binaiensis, Dentoglobigerina globosa, Dentoglobigerina globularis, Dentoglobigerina tripartita, and Globoquadrina dehiscens. Here we present scanning electron microscope and z-stacking light microscope images in three views, including illustrations of their wall texture. 
    more » « less