Food security and the agricultural economy are both dependent on the temporal stability of crop yields. To this end, increasing crop diversity has been suggested as a means to stabilize agricultural yields amidst an ongoing decrease in cropping system diversity across the world. Although diversity confers stability in many natural ecosystems, in agricultural systems the relationship between crop diversity and yield stability is not yet well resolved across spatial scales. Here, we leveraged crop area, production, and price data from 1981 to 2020 to assess the relationship between crop diversity and the stability of both economic and caloric yields at the state level within the USA. We found that, after controlling for climatic instability and differences in irrigated area, crop diversity was positively associated with economic yield stability but negatively associated with caloric yield stability. Further, we found that crops with a propensity for increasing economic yield stability but reducing caloric yield stability were often found in the most diverse states. We propose that price responses to changes in production for high-value crops underly the positive relationship between diversity and economic yield stability. In contrast, spatial concentration of calorie-dense crops in low-diversity states contributes to the negative relationship between diversity and caloric yield stability. Our results suggest that the relationship between crop diversity and yield stability is not universal, but instead dependent on the spatial scale in question and the stability metric of interest.
- Award ID(s):
- 1632810
- PAR ID:
- 10229834
- Date Published:
- Journal Name:
- npj Science of Food
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2396-8370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Viable nature-based climate solutions (NbCS) are needed to achieve climate goals expressed in international agreements like the Paris Accord. Many NbCS pathways have strong scientific foundations and can deliver meaningful climate benefits but effective mitigation is undermined by pathways with less scientific certainty. Here we couple an extensive literature review with an expert elicitation on 43 pathways and find that at present the most used pathways, such as tropical forest conservation, have a solid scientific basis for mitigation. However, the experts suggested that some pathways, many with carbon credit eligibility and market activity, remain uncertain in terms of their climate mitigation efficacy. Sources of uncertainty include incomplete GHG measurement and accounting. We recommend focusing on resolving those uncertainties before broadly scaling implementation of those pathways in quantitative emission or sequestration mitigation plans. If appropriate, those pathways should be supported for their cobenefits, such as biodiversity and food security.
-
null (Ed.)A continuously growing pressure to increase food, fiber, and fuel production to meet worldwide demand and achieve zero hunger has put severe pressure on soil resources. Abandoned, degraded, and marginal lands with significant agricultural constraints—many still used for agricultural production—result from inappropriately intensive management, insufficient attention to soil conservation, and climate change. Continued use for agricultural production will often require ever more external inputs such as fertilizers and herbicides, further exacerbating soil degradation and impeding nutrient recycling and retention. Growing evidence suggests that degraded lands have a large potential for restoration, perhaps most effectively via perennial cropping systems that can simultaneously provide additional ecosystem services. Here we synthesize the advantages of and potentials for using perennial vegetation to restore soil fertility on degraded croplands, by summarizing the principal mechanisms underpinning soil carbon stabilization and nitrogen and phosphorus availability and retention. We illustrate restoration potentials with example systems that deliver climate mitigation (cellulosic bioenergy), animal production (intensive rotational grazing), and biodiversity conservation (natural ecological succession). Perennialization has substantial promise for restoring fertility to degraded croplands, helping to meet future food security needs.more » « less
-
Abstract China has large, estimated potential for direct air carbon capture and storage (DACCS) but its deployment locations and impacts at the subnational scale remain unclear. This is largely because higher spatial resolution studies on carbon dioxide removal (CDR) in China have focused mainly on bioenergy with carbon capture and storage. This study uses a spatially detailed integrated energy-economy-climate model to evaluate DACCS for 31 provinces in China as the country pursues its goal of climate neutrality by 2060. We find that DACCS could expand China’s negative emissions capacity, particularly under sustainability-minded limits on bioenergy supply that are informed by bottom-up studies. But providing low-carbon electricity for multiple GtCO2yr−1DACCS may require over 600 GW of additional wind and solar capacity nationwide and comprise up to 30% of electricity demand in China’s northern provinces. Investment requirements for DACCS range from $330 to $530 billion by 2060 but could be repaid manyfold in the form of avoided mitigation costs, which DACCS deployment could reduce by up to $6 trillion over the same period. Enhanced efforts to lower residual CO2emissions that must be offset with CDR under a net-zero paradigm reduce but do not eliminate the use of DACCS for mitigation. For decision-makers and the energy-economy models guiding them, our results highlight the value of expanding beyond the current reliance on biomass for negative emissions in China.
-
The dramatic increase in greenhouse gas (GHG) emissions by humans over the past century and a half has created an urgency for monitoring, reporting, and verifying GHG emissions as a first step toward mitigating the effects of climate change. Fifteen percent of global GHG emissions come from agriculture, and companies in the food and beverage industry are starting to set climate goals. We examined the GHG emissions reporting practices and climate goals of the top 100 global food and beverage companies (as ranked by Food Engineering) and determined whether their goals are aligned with the science of keeping climate warming well below a 2°C increase. Using publicly disclosed data in CDP Climate reports and company sustainability reports, we found that about two thirds of the top 100 global food and beverage companies disclose at least part of their total company emissions and set some sort of climate goal that includes scope 1 and 2 emissions. However, only about half have measured, disclosed, and set goals for scope 3 emissions, which often encompass about 88% of a company's emissions across the entire value chain on average. We also determined that companies, despite setting scope 1, 2, and 3 emission goals, may be missing the mark on whether their goals are significantly reducing global emissions. Our results present the current disclosure and emission goals of the top 100 global food and beverage companies and highlight an urgent need to begin and continue to set truly ambitious, science-aligned climate goals.more » « less