skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expedition 388 Scientific Prospectus: Equatorial Atlantic Gateway
International Ocean Discovery Program (IODP) Expedition 388 seeks to answer first-order questions about the tectonic, climatic, and biotic evolution of the Equatorial Atlantic Gateway (EAG). The scheduled drilling operations will target sequences of Late Cretaceous and Cenozoic sediments offshore northeast Brazil, just south of the theorized final opening point of the EAG. These sequences are accessible to conventional riserless drilling in the vicinity of the Pernambuco Plateau, part of the northeastern Brazilian continental shelf. This region was chosen to satisfy two key constraints: first, that some of the oldest oceanic crust of the equatorial Atlantic and overlying early postrift sediments are present at depths shallow enough to be recovered by riserless drilling, and second, Late Cretaceous and Paleogene sediments preserved on the Pernambuco Plateau are close enough to the continental margin and at shallow enough paleowater depths (<2000 m) to provide well-preserved organic biomarkers and calcareous microfossils for multiproxy studies of greenhouse climate states. New records in this region will allow us to address major questions in four key objectives: the early rift history of the equatorial Atlantic, the biogeochemistry of the restricted equatorial Atlantic, the long-term paleoceanography of the EAG, and the limits of tropical climates and ecosystems under conditions of extreme warmth. Tackling these major questions with new drilling in the EAG region will advance our understanding of the long-term interactions between tectonics, oceanography, ocean biogeochemistry, and climate and the functioning of tropical ecosystems and climate during intervals of extreme warmth.  more » « less
Award ID(s):
1326927
PAR ID:
10229909
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific prospectus
Volume:
388
ISSN:
2332-1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 387 aims to recover sediments at two sites located in shallow water (~350 to 450 m) on the uppermost continental slope west of the Amazon Fan, northwest of the mouth of the Amazon River. These sediments were deposited in the upper part of the long-lived Foz do Amazonas Basin of the equatorial margin of Brazil. These two sites will recover a sedimentary sequence that spans much of the Cenozoic but with variable provenance and highly variable sedimentation rates. By virtue of their location, the Quaternary sediments will recover an abundance of terrigenous materials including pollen, organic matter, zircon grains, and clay minerals, allowing detailed reconstruction of the biodiversity, climate, and hydrology of the adjacent tropical South American continent. At the same time, an abundance of well-preserved marine microfossils and organic matter will allow accurate determination of the age and oceanographic conditions of the western equatorial Atlantic that partly forced the climate of the adjacent continent. However, our reconstructions of the spatial patterns of biodiversity and climate through time must be interpreted with the knowledge that the geometry of the watersheds that contributed water and sediment to the coastal Atlantic was itself rearranged through time. For example, a transcontinental proto-Amazon river did not likely reach the Atlantic until somewhere between 11 and 2 Ma, a date that we expect to more accurately determine from these new cores. Prior to that event, terrigenous sediments at our sites would have been derived from smaller coastal rivers draining watersheds limited to the eastern tropics of northeastern South America. The planned drill sites of Expedition 387 will be the marine complement to a transect of continental drill sites. Together, the marine and continental sites form the Trans-Amazon Drilling Project (TADP), a project that is partly funded by the International Continental Drilling Program (ICDP). The TADP addresses fundamental questions about the Cenozoic climatic evolution of the Amazon region, the origins and evolution of the neotropical rain forest and its biodiversity, and the origins and rearrangements of the transcontinental Amazon River. Together, we expect that these IODP and ICDP projects will transform our understanding of Amazonian geological, climatic, biological, and paleoceanographic history. 
    more » « less
  2. null (Ed.)
    The long-term climate transition from the Cretaceous greenhouse to the late Paleogene icehouse provides an opportunity to study changes in Earth system dynamics associated with large changes in global temperature and atmospheric CO2 levels. Elevated CO2 levels during the mid-Cretaceous supergreenhouse interval (~95–80 Ma) resulted in low meridional temperature gradients, and oceanic deposition during this time was punctuated by widespread episodes of severe anoxia termed oceanic anoxic events, resulting in enhanced burial of organic carbon in conjunction with transient carbon isotope and temperature excursions. The prolonged interval of mid-Cretaceous warmth and subsequent Late Cretaceous–Paleogene climate trends, as well as intervening short-lived climate excursions, are poorly documented in the southern high latitudes. International Ocean Discovery Program (IODP) Expedition 392 aims to drill five sites in the southwest Indian Ocean on the Agulhas Plateau and in the Transkei Basin, positioned at paleolatitudes of 65°–58°S during the Late Cretaceous (100–66 Ma) and in the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and expanded sedimentary sequences from the Agulhas Plateau and Transkei Basin will provide a wealth of new data to (i) determine the nature and origin of the Agulhas Plateau and (ii) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed. Importantly, Expedition 392 drilling will test competing hypotheses concerning Agulhas Plateau large igneous province formation and the role of deep ocean circulation changes through southern gateways in controlling Late Cretaceous–Paleogene climate evolution. 
    more » « less
  3. During International Ocean Discovery Program Expedition 392, three sites were drilled on the Agulhas Plateau and one site was drilled in the Transkei Basin in the Southwest Indian Ocean. This region was positioned at paleolatitudes of ~53°–61°S during the Late Cretaceous (van Hinsbergen et al., 2015) (100–66 Ma) and within the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and sedimentary sequences from the Agulhas Plateau sites and a thick sedimentary sequence in the Transkei Basin provides a wealth of new data to (1) determine the nature, origin, and bathymetric evolution of the Agulhas Plateau; (2) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed; (3) document long- and short-term paleoceanographic variability through the Late Cretaceous and Paleogene; and (4) investigate geochemical interactions between igneous rocks, sediments, and pore waters through the life cycle of a large igneous province (LIP). Importantly, postcruise analysis of Expedition 392 drill cores will allow testing of competing hypotheses concerning Agulhas Plateau LIP formation and the role of deep ocean circulation changes through southern gateways in influencing Late Cretaceous–early Paleogene climate evolution. 
    more » « less
  4. During International Ocean Discovery Program Expedition 392, three sites were drilled on the Agulhas Plateau and one site was drilled in the Transkei Basin in the Southwest Indian Ocean. This region was positioned at paleolatitudes of ~53°–61°S during the Late Cretaceous (van Hinsbergen et al., 2015) (100–66 Ma) and within the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and sedimentary sequences from the Agulhas Plateau sites and a thick sedimentary sequence in the Transkei Basin provides a wealth of new data to (1) determine the nature and origin of the Agulhas Plateau; (2) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed; (3) document long-term paleoceanographic variability through the Late Cretaceous and Paleogene; and (4) investigate geochemical interactions between igneous rocks, sediments, and pore waters through the life cycle of a large igneous province (LIP). Importantly, postcruise analysis of Expedition 392 drill cores will allow testing of competing hypotheses concerning Agulhas Plateau LIP formation and the role of deep ocean circulation changes through southern gateways in controlling Late Cretaceous–early Paleogene climate evolution. 
    more » « less
  5. Marine gateways play a critical role in the exchange of water, heat, salt, and nutrients between oceans and seas. Changes in gateway geometry can significantly alter both the pattern of global ocean circulation and climate. Today, the volume of dense water supplied by Atlantic–Mediterranean exchange through the Gibraltar Strait is among the largest in the global ocean. For the past 5 My, this overflow has generated a saline plume at intermediate depths in the Atlantic that deposits distinctive contouritic sediments and contributes to the formation of North Atlantic Deep Water. This single gateway configuration only developed in the Early Pliocene. During the Miocene, two narrow corridors linked the Mediterranean and Atlantic: one in northern Morocco and the other in southern Spain. Progressive restriction and closure of these corridors resulted in extreme salinity fluctuations in the Mediterranean and the precipitation of the Messinian Salinity Crisis salt giant. International Ocean Discovery Program (IODP) Expedition 401 is the offshore drilling component of a Land-2-Sea drilling proposal, Investigating Miocene Mediterranean–Atlantic Gateway Exchange (IMMAGE). Its aim is to recover a complete record of Atlantic–Mediterranean exchange from its Late Miocene inception to its current configuration by targeting Miocene offshore sediments on either side of the Gibraltar Strait. Miocene cores from the two precursor connections now exposed on land will be obtained by future International Continental Scientific Drilling Program (ICDP) campaigns. 
    more » « less