Axon pathfinding and neuronal migration are orchestrated by attractive and repulsive guidance cues. In the mouse spinal cord, repulsion from Slit proteins through Robo family receptors and attraction to Netrin-1, mediated by the receptor DCC, control many aspects of neural circuit formation. This includes motor neuron wiring, where Robos help prevent both motor neuron cell bodies and axons from aberrantly crossing the spinal cord midline. These functions had been ascribed to Robo signaling being required to counter DCC-mediated attraction to Netrin-1 at the midline, either by mediating repulsion from midline-derived Slits or by silencing DCC signaling. However, the role of DCC in promoting motor neuron and axon midline crossing had not been directly tested. Here, we usedin vivomouse genetics andin vitroaxon turning assays to further explore the interplay between Slit and Netrin signaling in motor neuron migration and axon guidance relative to the midline. We find that DCC is a major driver of midline crossing by motor axons, but not motor neuron cell bodies, whenRobo1andRobo2are knocked out. Further,in vitroresults indicate that Netrin-1 attracts motor axons and that Slits can modulate the chemotropic response to Netrin-1, converting it from attraction to repulsion. Our findings indicate that Robo signaling allows both motor neuron cell bodies and axons to avoid the midline, but that only motor axons require this pathway to antagonize DCC-dependent midline attraction, which likely involves a combination of mediating Slit repulsion and directly influencing Netrin-DCC signaling output. 
                        more » 
                        « less   
                    
                            
                            Characterizing the diverse cells that associate with the developing commissures of the zebrafish forebrain
                        
                    
    
            During embryonic development of bilaterally symmetrical organisms, neurons send axons across the midline at specific points to connect the two halves of the nervous system with a commissure. Little is known about the cells at the midline that facilitate this tightly regulated process. We exploit the conserved process of vertebrate embryonic development in the zebrafish model system to elucidate the identity of cells at the midline that may facilitate postoptic (POC) and anterior commissure (AC) development. We have discovered that three different gfap+ astroglial cell morphologies persist in contact with pathfinding axons throughout commissure formation. Similarly, olig2+ progenitor cells occupy delineated portions of the postoptic and anterior commissures where they act as multipotent, neural progenitors. Moreover, we conclude that both gfap+ and olig2+ progenitor cells give rise to neuronal populations in both the telencephalon and diencephalon; however, these varied cell populations showed significant developmental timing differences between the telencephalon and diencephalon. Lastly, we also showed that fli1a+ mesenchymal cells migrate along the presumptive commissure regions before and during midline axon crossing. Furthermore, following commissure maturation, specific blood vessels formed at the midline of the POC and immediately ventral and parallel to the AC. This comprehensive account of the cellular populations that correlate with the timing and position of commissural axon pathfinding has supported the conceptual modeling and identification of the early forebrain architecture that may be necessary for proper commissure development. 
        more » 
        « less   
        
    
    
                            - PAR ID:
 - 10230029
 
- Date Published:
 
- Journal Name:
 - Developmental Neurobiology
 
- Issue:
 - 00
 
- ISSN:
 - 1932-8451
 
- Page Range / eLocation ID:
 - 1-25
 
- Format(s):
 - Medium: X
 
- Sponsoring Org:
 - National Science Foundation
 
More Like this
- 
            
 - 
            Abstract During vertebrate retinal development, transient populations of retinal progenitor cells with restricted cell fate choices are formed. One of these progenitor populations expresses the Thrb gene and can be identified by activity of the ThrbCRM1 cis-regulatory element. Short-term assays have concluded that these cells preferentially generate cone photoreceptors and horizontal cells, however developmental timing has precluded an extensive cell type characterization of their progeny. Here we describe the development and validation of a recombinase-based lineage tracing system for the chicken embryo to further characterize the lineage of these cells. The ThrbCRM1 element was found to preferentially form photoreceptors and horizontal cells, as well as a small number of retinal ganglion cells. The photoreceptor cell progeny are exclusively cone photoreceptors and not rod photoreceptors, confirming that ThrbCRM1 progenitor cells are restricted from the rod fate. In addition, specific subtypes of horizontal cells and retinal ganglion cells were overrepresented, suggesting that ThrbCRM1 progenitor cells are not only restricted for cell type, but for cell subtype as well.more » « less
 - 
            In the developing central nervous system, pre-myelinating oligodendrocytes contact and sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize and mature, leading to the initiation of axon wrapping, myelin sheath formation, and sheath elongation by oligodendrocytes. Although axonal signals influence the overall process of myelination, which precise steps and oligodendrocyte cell behaviors require signaling from axons is incompletely understood. In this study, we investigated whether cell behaviors during the early events of myelination involve input from axons or are mediated by an oligodendrocyte-autonomous myelination program. To address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes. In the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and pruning frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When the ratio of oligodendrocytes to target axons was increased by ablating spinal projection axons, local spinal neuron axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons. We conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization.more » « less
 - 
            Tissue development requires local and long-distance communication between cells. Cell ablation experiments have provided critical insights into the functions of specific cell types and the tissue surrounding the dead cells. In theDrosophilaneuromuscular system, ablation of motor neurons and muscles has revealed the roles of the ablated cells in axon pathfinding and circuit wiring. For example, when muscles are denervated due to laser ablation of their motor neuron inputs, they receive ectopic innervation from neighboring motor neurons. Here, we describe two methods of specific cell ablation. The first is a genetic ablation approach that usesGAL4(ideally expressed in a small subset of cells) to drive expression of cell death genesreaperandhead involution defective. The second method relies on reactive oxygen species produced by light activation of theArabidopsis-derived Singlet Oxygen Generator, miniSOG2, expressed in a subset of cells. For the latter, the precision stems from both theGAL4and the restricting of the blue-light stimulation area.more » « less
 - 
            Sensory axons must traverse a spinal cord glia limitans to connect the brain with the periphery. The fundamental mechanism of how these axons enter the spinal cord is still debatable; both Ramon y Cajal’s battering ram hypothesis and a boundary cap model have been proposed. To distinguish between these hypotheses, we visualized the entry of pioneer axons into the dorsal root entry zone (DREZ) with time-lapse imaging in zebrafish. Here, we identify that DRG pioneer axons enter the DREZ before the arrival of neural crest cells at the DREZ. Instead, actin-rich invadopodia in the pioneer axon are necessary and sufficient for DREZ entry. Using photoactivable Rac1, we demonstrate cell-autonomous functioning of invasive structures in pioneer axon spinal entry. Together these data support the model that actin-rich invasion structures dynamically drive pioneer axon entry into the spinal cord, indicating that distinct pioneer and secondary events occur at the DREZ.more » « less
 
An official website of the United States government 
				
			
                                    