The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impingingmore »
Expedition 379 Scientific Prospectus Addendum: Amundsen Sea West Antarctic Ice Sheet History
Concerns about sea ice cover in the Amundsen Sea mandated the inclusion of many alternate sites for Expedition 379 in the original Scientific Prospectus (Gohl et al., 2017). The extraordinary ice cover in the Amundsen Sea during austral summer 2017/18 has prompted consideration of all possible alternates in case extreme sea ice conditions occur again in early 2019. In response to this, the following actions have been taken:
1. Four new alternate sites on the continental rise farther away from the sea ice edge of season 2017/18 have been added to the science and operational plans to maximize the range of options in the Amundsen Sea. These are proposed Sites ASRE-07A, ASRE-08A, and ASRE-09A on the eastern Amundsen Sea rise and ASRW-02A on the western Amundsen Sea rise (Table T1; Figure F1; see Site summaries).
2. Permission was obtained to occupy a range of locations along the seismic lines at each proposed site to provide for greater operational flexibility in case local ice conditions require it. These are presented in Table T2.
3. Alternative drilling areas in regions adjacent to the Amundsen Sea have been added in case the Expedition 379 operations cannot take place as planned. These include sites approved as part more »
- Award ID(s):
- 1326927
- Publication Date:
- NSF-PAR ID:
- 10230091
- Journal Name:
- Scientific prospectus
- Volume:
- 379
- ISSN:
- 2332-1385
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic Ice Sheet outside the Antarctic Peninsula, including changes caused by substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct record of glacial history offshore from a drainage basin that receives ice exclusively from the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, warm Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting of the undersidemore »
-
The West Antarctic Ice Sheet (WAIS) is largely marine based and thus highly sensitive to both climatic and oceanographic changes. Therefore, the WAIS has likely had a very dynamic history over the last several million years. A complete collapse of the WAIS would result in a global sea level rise of 3.3–4.3 m, yet the world’s scientific community is not able to predict its future behavior. Moreover, knowledge about past behavior of the WAIS is poor, in particular during geological times with climatic conditions similar to those expected for the near and distant future. Reconstructions and quantifications of partial or complete WAIS collapses in the past are urgently needed for constraining and testing ice sheet models that aim to predict future WAIS behavior and the potential contribution of the WAIS to global sea level rise. Large uncertainties exist regarding the chronology, extent, rates, and spatial and temporal variability of past advances and retreats of the WAIS across the continental shelves. These uncertainties largely result from the fundamental lack of data from drill cores recovered proximal to the WAIS. The continental shelf and rise of the Amundsen Sea are prime targets for drilling because the records are expected to yield archivesmore »
-
IODP Expedition 379 to the Amundsen Sea continental rise recovered latest Miocene-Holocene sediments from two sites on a drift in water depths >3900m. Sediments that are dominated by clay and silty clay host pebbles and cobbles of ice-rafted detritus (IRD) (Gohl et al. 2021, doi: 10.14379/iodp.proc.379.2021). Cobble-sized dropstones also appear as fall-in, in the top of cores recovered from sediments >5.3 Ma. The principle means to deposit abundant IRD and sparse dropstones in deep sea sediment is through melting of icebergs released by Antarctic ice-sheet calving events. We use petrological and age characteristics of clasts from the Exp379 sites to fingerprint their bedrock provenance to extend knowledge of subglacial bedrock, and with the intention to illuminate changes in icesheet extent between 7 – 3 Ma that lend credence to forecasts of extensive future change. Mapped onshore geology shows pronounced distinctions in bedrock age between tectonic provinces of West or East Antarctica (e.g. Cox et al. 2020, doi:10.21420/7SH7-6K05; Jordan et al. 2020, doi.org/10.1038/s43017-019-0013-6). This allows us to use geochronology and thermochronology of rock clasts and minerals for tracing their provenance, and hence ascertain whether IRD deposited at the 379 drillsites originated from proximal or distal Antarctic sources. We here report zirconmore »
-
IODP Expedition 379 to the Amundsen Sea continental rise recovered latest Miocene-Holocene sediments from two sites on a drift in water depths >3900m. Sediments are dominated by clay and silty clay with coarser-grained intervals and ice-rafted detritus (IRD) (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021). Cobble-sized dropstones appear as fall-in, in cores recovered from sediments >5.3 Ma. We consider that abundant IRD and the sparse dropstones melted out of icebergs formed due to Antarctic ice-sheet calving events. We are using petrological and age characteristics of the clasts from the Exp379 sites to fingerprint their bedrock provenance. The results may aid in reconstruction of past changes in icesheet extent and extend knowledge of subglacial bedrock. Mapped onshore geology shows pronounced distinctions in bedrock age between tectonic provinces of West or East Antarctica (e.g. Cox et al. 2020, doi:10.21420/7SH7-6K05; Jordan et al. 2020, doi.org/10.1038/s43017-019-0013-6). This allows us to use geochronology and thermochronology of rock clasts and minerals for tracing their provenance, and ascertain whether IRD deposited at IODP379 drillsites originated from proximal or distal Antarctic sources. We here report zircon and apatite U-Pb dates from four sand samples and five dropstones taken from latest Miocene, early Pliocene, and Plio-Pleistocene-boundary sediments. Additional Hf isotope data,more »