skip to main content


Title: Expedition 371 Scientific Prospectus: Tasman Frontier Subduction Initiation and Paleogene Climate
During International Ocean Discovery Program Expedition 371, we will core and log Paleogene and Neogene sediment sequences within the Tasman Sea. The cores will be analyzed for their sediment composition, microfossil components, mineral and water chemistry, and physical properties. The research will improve our understanding of how convergent plate boundaries form, how greenhouse climate systems work, and how and why global climate has evolved over the last 60 my. The most profound subduction initiation event and global plate-motion change since 80 Ma appears to have occurred in the early Eocene, when Tonga-Kermadec and Izu-Bonin-Mariana subduction initiation corresponded with a change in direction of the Pacific plate (Emperor-Hawaii bend) at ~50 Ma. The primary goal of Expedition 371 is to precisely date and quantify deformation and uplift/subsidence associated with Tonga-Kermadec subduction initiation in order to test predictions of alternate geodynamic models. This tectonic change may coincide with the pinnacle of Cenozoic “greenhouse” climate. However, paleoclimate proxy data from lower Eocene strata in the southwest Pacific show especially warm conditions, presenting a significant discrepancy with climate model simulations. The second goal is to determine if paleogeographic changes caused by subduction initiation may have led to anomalous regional warmth by altering ocean circulation. Late Neogene sediment cores will complement earlier drilling to investigate the third goal: tropical and polar climatic teleconnections. During Expedition 371, we will drill in a significant midlatitude transition zone influenced by both the Antarctic Circumpolar Current and the Eastern Australian Current. The accumulation of relatively thick carbonate-rich Neogene bathyal strata make this a good location for generating detailed paleoceanographic records from the Miocene through the Pleistocene that can be linked to previous ocean drilling expeditions in the region (Deep Sea Drilling Project Legs 21, 29, and 90; Ocean Drilling Program Leg 189) and elsewhere in the Pacific Ocean.  more » « less
Award ID(s):
1326927
NSF-PAR ID:
10230132
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific prospectus
Volume:
371
ISSN:
2332-1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 371 drilled six sites (U1506–U1511) in the Tasman Sea, southwest Pacific, between 27 July and 26 September 2017. The primary goal was to understand Tonga-Kermadec subduction initiation through recovery of Paleogene sediment records. Secondary goals were to understand regional oceanography and climate through intervals of the Cenozoic, especially the Eocene. We recovered 2506 m of cored sediment and volcanic rock in 36.4 days of on-site drilling over a total expedition length of 58 days. The ages of strata at the base of each site were middle Eocene to Late Cretaceous. The cored intervals at five sites (U1506–U1510) sampled mostly nannofossil and foraminiferal ooze or chalk that contained volcanic or volcaniclastic intervals with variable clay content. Paleocene and Cretaceous sections at Site U1509 also contain calcareous clay and claystone. At Site U1511, a sequence of abyssal clay and diatomite was recovered with only minor amounts of carbonate. Wireline logs were collected at Sites U1507 and U1508. Our results provide the first firm basis for correlating lithostratigraphic units across a substantial part of northern Zealandia, including ties to onshore geology in New Caledonia and New Zealand. All six sites provide new stratigraphic and paleogeographic information that can be put into context through regional seismic stratigraphic interpretation and hence provide constraints on geodynamic models of subduction zone initiation. Evidence from Site U1507 suggests the northern New Caledonia Trough formed during an early stage of Paleogene tectonic change (before 44 Ma). Paleowater depth estimates from Site U1509 indicate that the Cretaceous Fairway-Aotea-Taranaki Basin dramatically deepened (~2000 m) at a similar time. Northern Lord Howe Rise at Site U1506 rose to sea level at ~50 Ma and subsided back to bathyal depths (600–1000 m) by 45 Ma. In contrast, southern Lord Howe Rise, at least near Site U1510, experienced its peak of transient uplift at ~40–30 Ma. A pulse of convergent plate failure took place across the southern part of the region (Sites U1508–U1511) between 45 and 35 Ma. Uplift of Lord Howe Rise was associated with intraplate volcanism, whereas volcanic activity on Norfolk Ridge near Site U1507 started at ~38 Ma and may relate to subduction. Shipboard observations made using cores and logs represent a substantial gain in fundamental knowledge about northern Zealandia. Prior to Expedition 371, only Deep Sea Drilling Project Sites 206, 207, and 208 had penetrated beneath upper Eocene strata in the region. Our samples and results provide valuable new constraints on geodynamic models of subduction initiation because they reveal the timing of plate deformation, the magnitude and timing of vertical motions, and the timing and type of volcanism. Secondary drilling objectives focused on paleoclimate topics were not fully completed, but significant new records were obtained that should contain information on Cenozoic oceanography and climate in the southwest Pacific. 
    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 371 drilled six sites in the Tasman Sea of the southwest Pacific between 27 July and 26 September 2017. The primary goal was to understand Tonga-Kermadec subduction initiation through recovery of Paleogene sediment records. Secondary goals involved understanding regional oceanography and climate since the Paleogene. Six sites were drilled, recovering 2506 m of cored sediment and volcanic rock in 36.4 days of on-site drilling during a total expedition length of 58 days. Wireline logs were collected at two sites. Shipboard observations made using cores and logs represent a substantial gain in fundamental knowledge about northern Zealandia, because only Deep Sea Drilling Project Sites 206, 207, and 208 had penetrated beneath upper Eocene strata within the region. The cored intervals at five sites (U1506–U1510) sampled nannofossil and foraminiferal ooze or chalk that contained volcanic or volcaniclastic intervals with variable clay content. Paleocene and Cretaceous sections range from more clay rich to predominantly claystone. At the final site (U1511), a sequence of abyssal clay and diatomite was recovered with only minor amounts of carbonate. The ages of strata at the base of each site were middle Eocene to Late Cretaceous, and our new results provide the first firm basis for defining formal lithostratigraphic units that can be mapped across a substantial part of northern Zealandia and related to onshore regions of New Caledonia and New Zealand. The material and data recovered during Expedition 371 enable primary scientific goals to be accomplished. All six sites provided new stratigraphic and paleogeographic information that can be put into context through regional seismic-stratigraphic interpretation and hence provide strong constraints on geodynamic models of subduction zone initiation. Our new observations can be directly related to the timing of plate deformation, the magnitude and timing of vertical motions, and the timing and type of volcanism. Secondary paleoclimate objectives were not all completed as planned, but significant new records of southwest Pacific climate were obtained. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 359 is designed to address sea level, currents, and monsoon evolution in the Indian Ocean. Seven proposed drill sites are located in the Maldives and one site is located in the Kerala-Konkan Basin on the western Indian continental margin. The Maldives carbonate edifice bears a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. It has great potential to serve as a key area for better understanding the effects of this global evolution in the Indo-Pacific realm. Based mainly on seismic stratigraphic data, a model for the evolution of this carbonate bank has been developed, showing how changing sea level and ocean current patterns shaped the bank geometries. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system is thought to be directly linked to the evolving Indian monsoon. Fluctuations in relative sea level control the stacking pattern of depositional sequences during the lower to middle Miocene. This phase was followed by a two-fold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and the deposition of giant sediment drifts. The shapes of drowned banks attest to the occurrence of these strong currents. The drift sediments, characterized by off-lapping geometries, formed large-scale prograding complexes, filling the Maldives Inner Sea basin. Because the strong current swept most of the sediment around the atolls away, relict banks did not prograde, and steady subsidence was balanced by aggradation of the atolls, which are still active today. One important outcome of Expedition 359 is ground-truthing the hypothesis that the dramatic, pronounced change in the style of the sedimentary carbonate sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. Answering this question will directly improve our knowledge on processes shaping carbonate platforms and their stratigraphic records. Our findings would be clearly applicable to other Tertiary carbonate platforms in the Indo-Pacific region and to numerous others throughout the geological record. In addition, the targeted successions will allow calibration of the Neogene oceanic δ13C record with data from a carbonate platform to platform-margin series. This is becoming important, as such records are the only type that exist in deep time. Drilling will provide the cores required for reconstructing changing current systems through time that are directly related to the evolution of the Indian monsoon. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. These data will be valuable for a comparison with proposed Site KK-03B in the Kerala-Konkan Basin (see Geological setting of the Kerala-Konkan Basin, below) and other monsoon-dedicated IODP expeditions. The proposed site in the Kerala-Konkan Basin provides the opportunity to recover colocated oceanic and terrestrial records for monsoon and premonsoon Cenozoic climate in the eastern Arabian Sea and India, respectively. The site is located on a bathymetric high immediately north of the Chagos-Laccadive Ridge and is therefore not affected by strong tectonic, glacial, and nonmonsoon climatic processes that affect fan sites fed by Himalayan rivers. The cores are expected to consist of a continuous sequence of foraminifer-rich pelagic sediments with subordinate cyclical siliciclastic inputs of fluvial origin from the Indian Peninsula for the Neogene and a continuous paleoclimate record at orbital timescales into the Eocene and possibly the Paleocene. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Expedition 359 was designed to address changes in sea level and currents, along with monsoon evolution in the Indian Ocean. The Maldives archipelago holds a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. Cores from eight drill sites in the Inner Sea of the Maldives provide the tropical marine record that is key for better understanding the effects of this global evolution in the Indo-Pacific realm. In addition, the bank geometries of the carbonate archipelago provide a physical record of changing sea level and ocean currents. The bank growth occurs in pulses of aggradation and progradation that are controlled by sea level fluctuations during the early and middle Miocene, including the mid-Miocene Climate Optimum. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system appears to be directly linked to the evolving Indian monsoon. This phase led to a twofold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and subsequent deposition of contourite fans and large-scale sediment drifts. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. A major focus of Expedition 359 was to date precisely the onset of the current system. This goal was successfully completed during the expedition. The second important outcome of Expedition 359 was groundtruthing the hypothesis that the dramatic, pronounced change in style of the carbonate platform sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. These questions are directly addressed by the shipboard scientific data. In addition, Expedition 359 cores will provide a complete Neogene δ13C record of the platform and platform margin sediments and a comparison with pelagic records over the same time period. This comparison will allow assessment of the extent to which platform carbonates record changes in the global carbon cycle and whether changes in the carbon isotopic composition of organic and inorganic components covary and the implications this has on the deep-time record. This determination is important because such records are the only type that exists in deep time. 
    more » « less
  5. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently retreating due to shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss of the WAIS. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in marine-based ice sheet extent during the late Neogene and Quaternary. Numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been collected in marginal settings, sedimentologic sequences from the outer continental shelf are required to evaluate the extent of past ice sheet variability and the associated oceanic forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five drill sites from the outer continental shelf to rise in the eastern Ross Sea to resolve the relationship between climatic and oceanic change and WAIS evolution through the Neogene and Quaternary. This location was selected because numerical ice sheet models indicate that this sector of Antarctica is highly sensitive to changes in ocean heat flux. The expedition was designed for optimal data-model integration and will enable an improved understanding of the sensitivity of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the late early to middle Miocene). The principal goals of Expedition 374 were to • Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; • Reconstruct ice-proximal atmospheric and oceanic temperatures to identify past polar amplification and assess its forcings and feedbacks; • Assess the role of oceanic forcing (e.g., sea level and temperature) on AIS stability/instability; • Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and • Reconstruct eastern Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet stability/instability, and global climate. To achieve these objectives, we will • Use data and models to reconcile intervals of maximum Neogene and Quaternary Antarctic ice advance with far-field records of eustatic sea level change; • Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; • Reconstruct Neogene and Quaternary sea ice margin fluctuations in datable marine continental slope and rise records and correlate these records to existing inner continental shelf records; • Examine relationships among WAIS stability/instability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and • Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 was carried out from January to March 2018, departing from Lyttelton, New Zealand. We recovered 1292.70 m of high-quality cores from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite, mudstone, and diatomite, penetrating the Ross Sea seismic Unconformity RSU4. The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the early and middle Miocene. At Site U1522, we cored a discontinuous upper Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf, with the primary objective to penetrate and date seismic Unconformity RSU3, which is interpreted to represent the first major continental shelf–wide expansion and coalescing of marine-based ice streams from both East and West Antarctica. At Site U1523, we cored a sediment drift located beneath the westerly flowing Antarctic Slope Current (ASC). Cores from this site will provide a record of the changing vigor of the ASC through time. Such a reconstruction will enable testing of the hypothesis that changes in the vigor of the ASC represent a key control on regulating heat flux onto the continental shelf, resulting in the ASC playing a fundamental role in ice sheet mass balance. We also cored two sites on the continental slope and rise. At Site U1524, we cored a Plio–Pleistocene sedimentary sequence on the continental rise on the levee of the Hillary Canyon, which is one of the largest conduits of Antarctic Bottom Water delivery from the Antarctic continental shelf into the abyssal ocean. Drilling at Site U1524 was intended to penetrate into middle Miocene and older strata but was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (U1525) to core a single hole with a record complementary to the upper part of the section recovered at Site U1524. We returned to Site U1524 3 days later, after the sea ice cleared. We then cored Hole U1524C with the rotary core barrel with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF due to a mechanical failure with the vessel that resulted in termination of all drilling operations and a return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives as originally planned. In particular, we were not able to obtain the deeper time record of the middle Miocene on the continental rise or abyssal sequences that would have provided a continuous and contemporaneous archive to the high-quality (but discontinuous) record from Site U1521 on the continental shelf. The mechanical failure also meant we could not recover sediment cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a shelf-to-rise transect for the Miocene, a continental shelf-to-rise transect for the Pliocene to Pleistocene interval is possible through comparison of the high-quality records from Site U1522 with those from Site U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL). 
    more » « less