skip to main content


Title: Hydrogen Fuel Cell Vehicle Drivers and Future Station Planning: Lessons from a Mixed-Methods Approach
The market for hydrogen fuel cell vehicles (FCVs) continues to grow worldwide. At present, early adopters rely on a sparse refuelling infrastructure, and there is only limited knowledge about how they evaluate the geographic arrangement of stations when they decide to get an FCV, which is an important consideration for facilitating widespread FCV diffusion. To address this, we conducted several related studies based on surveys and interviews of early FCV adopters in California, USA, and a participatory geodesign workshop with hydrogen infrastructure planning stakeholders in Connecticut, USA. From this mixed-methods research project, we distil 15 high-level findings for planning hydrogen station infrastructure to encourage FCV adoption.  more » « less
Award ID(s):
1660514
NSF-PAR ID:
10230145
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Johnson Matthey Technology Review
Volume:
64
Issue:
3
ISSN:
2056-5135
Page Range / eLocation ID:
279-286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The migration of infrastructure from on premise installation and maintenance of computing resources to cloud based systems by business of all sizes has been an ongoing event for several years. To minimize capital expenses and allow for demand based operational expenses has increased the need for cloud practitioners with the ability to create and control these resources. The demand for skilled cloud workers ranging from developers to architects has been increasing, and one way to increase the technicians available for these job skills is to start recruitment as early as high school. For high school students interested in the technical side of STEM pathways, the ability to understand, design and work in a cloud environment is now part of critical technical skills. Fluency in cloud and cloud environments, the ability to understand the capabilities of all these modern technologies are necessary technical skills. To support this growing demand of cloud skills, the institution partnered with Amazon Web Services (AWS), the industry leader in cloud computing solutions, to train high school students as early cloud adopters and to be well-prepared for the computing/IT workforce of tomorrow. This academic-industry partnership aims to raise cloud literacy in K-12 by offering a two-week cloud computing bootcamp for high school students selected from traditionally underrepresented groups, Hispanic and/or African Americans. The bootcamp used a combination of team teaching, online sandbox repetition and experimentation, and project-based practice. The AWS materials provided by AWS Academy covered the details of the AWS infrastructure and were coupled with AWS Educate classroom sandboxes for practice. The two-week intensive practice and review certified 21 out of 31 high school students in the AWS Cloud Practitioner certification. This was the first time AWS Academy authorized high school students to take the certification exam and currently the largest cohort of high school students as AWS Cloud Practitioners. This paper presents the details of the pilot implementation of the summer bootcamp part of the cloud literacy initiative. This pilot includes curriculum, pedagogy, and software tools. Surveys were administered to the students to collect their demographic information, assessments of the pedagogical approaches and interest in cloud computing. Also, pre- and post-exam scores were reported to analyze student performance outcomes. These results are presented to show the potential of such an outreach program to build capacity and broaden participation in the computing field through emerging technology. 
    more » « less
  2. null (Ed.)
    Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning. 
    more » « less
  3. null (Ed.)
    Next-Generation 911 (NG911) infrastructure will replace analog systems designed to support voice services for landline 911 callers with digital, IP-based systems that will allow smartphone users to “call” 911 via voice, text, image, and streaming video. This brief paper reports findings from a workshop conducted at the 2019 911 Early Adopters’ Summit, during which local 911 professionals from across the United States reflected on strengths, weaknesses, opportunities, and threats associated with the adoption of NG911 infrastructure and, in particular, multimedia 911 services. Workshop participants pointed to long-standing issues NG911 stands to exacerbate, including high non-emergency call volumes, poor staff retention, and inadequate psychological support which the influx of multimedia 911 calls, including those with graphic imagery, may worsen. At the same time, participants looked to local, existing resources to mitigate these issues and exploit new opportunities afforded through NG911 infrastructure. Using these findings, preliminary recommendations are offered to improve information resources available to local 911 professionals adopting NG911 systems for effective and efficient multimedia 911 services. 
    more » « less
  4. Abstract

    Problems of poor network interoperability in electric vehicle (EV) infrastructure, where data about real-time usage or consumption is not easily shared across service providers, has plagued the widespread analysis of energy used for transportation. In this article, we present a high-resolution dataset of real-time EV charging transactions resolved to the nearest second over a one-year period at a multi-site corporate campus. This includes 105 charging stations across 25 different facilities operated by a single firm in the U.S. Department of Energy Workplace Charging Challenge. The high-resolution data has 3,395 real-time transactions and 85 users with both paid and free sessions. The data has been expanded for re-use such as identifying charging behaviour and segmenting user groups by frequency of usage, stage of adoption, and employee type. Potential applications include but are not limited to simulating and parameterizing energy demand models; investigating flexible charge scheduling and optimal power flow problems; characterizing transportation emissions and electric mobility patterns at high temporal resolution; and evaluating characteristics of early adopters and lead user innovation.

     
    more » « less
  5. null (Ed.)
    The recent growth in the California hydrogen fuel cell vehicle (FCV) market offers the opportunity to analyze how refueling stations that drivers use after some experience compare with those they initially intended to use. Online surveys completed by 124 FCV adopters in California in early 2019 were analyzed. Respondents listed stations they initially planned to use, stations that they later used, subjective reasons for using them, and important travel destinations. Network GIS analysis was then used to measure estimated travel times between both available and planned retail hydrogen stations and home, work, and frequently traveled routes, both at the time of adoption and at the time of the survey. Results show that 40% of respondents changed refueling stations over time. Those with stations objectively nearer to home, work, and frequently traveled routes were less likely to change their list. Drivers were more likely to subjectively label stations as near home and less likely to label them as on the way compared with objective measurements of these criteria, though these differences are greater for respondents who changed stations. Regardless of whether the station was available pre-adoption or opened post-adoption, stations that respondents added to their lists were farther from home than those they initially intended to use. For stations available pre-adoption, reliability positively influenced adding them after experience, while stations added by drivers that opened post-adoption tended to require short deviations to reach. These results indicate that a mixture of geographic and station-level characteristics contribute to FCV drivers changing stations over time. 
    more » « less