- Award ID(s):
- 1557895
- Publication Date:
- NSF-PAR ID:
- 10230435
- Journal Name:
- eLife
- Volume:
- 9
- ISSN:
- 2050-084X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Limb dominance is evident in many daily activities, leading to the prominent idea that each hemisphere of the brain specializes in controlling different aspects of movement. Past studies suggest that the dominant arm is primarily controlled via an internal model of limb dynamics that enables the nervous system to produce efficient movements. In contrast, the nondominant arm may be primarily controlled via impedance mechanisms that rely on the strong modulation of sensory feedback from individual joints to control limb posture. We tested whether such differences are evident in behavioral responses and stretch reflexes following sudden displacement of the arm during posture control. Experiment 1 applied specific combinations of elbow-shoulder torque perturbations (the same for all participants). Peak joint displacements, return times, end point accuracy, and the directional tuning and amplitude of stretch reflexes in nearly all muscles were not statistically different between the two arms. Experiment 2 induced specific combinations of joint motion (the same for all participants). Again, peak joint displacements, return times, end point accuracy, and the directional tuning and amplitude of stretch reflexes in nearly all muscles did not differ statistically when countering the imposed loads with each arm. Moderate to strong correlations were found between stretchmore »
-
Some Challenges of Playing with Power: Does Complex Energy Flow Constrain Neuromuscular Performance?
Abstract Many studies of the flow of energy between the body, muscles, and elastic elements highlight advantages of the storage and recovery of elastic energy. The spring-like action of structures associated with muscles allows for movements that are less costly, more powerful and safer than would be possible with contractile elements alone. But these actions also present challenges that might not be present if the pattern of energy flow were simpler, for example, if power were always applied directly from muscle to motions of the body. Muscle is under the direct control of the nervous system, and precise modulation of activity can allow for finely controlled displacement and force. Elastic structures deform under load in a predictable way, but are not under direct control, thus both displacement and the flow of energy act at the mercy of the mechanical interaction of muscle and forces associated with movement. Studies on isolated muscle-tendon units highlight the challenges of controlling such systems. A carefully tuned activation pattern is necessary for effective cycling of energy between tendon and the environment; most activation patterns lead to futile cycling of energy between tendon and muscle. In power-amplified systems, “elastic backfire” sometimes occurs, where energy loaded intomore »
-
Most animals – including birds, fish and mammals – have symmetrical left and right sides, and are known as bilaterians. During early life, the embryos of animals in this group develop three distinct layers of cells: the ectoderm (outer layer), the endoderm (inner layer), and the mesoderm (middle layer). These layers then go on to form the animal’s tissues and organs. The ectoderm produces external tissues, such as the skin and the nervous system; the endoderm forms internal tissues, like the gut; and the mesoderm creates all tissues in between, like muscles and blood. Another, smaller group of animals, called cnidarians, do not have left and right sides. Instead, they have a ‘radial symmetry’, meaning they have multiple identical parts arranged in a circle. These animals – which include corals, jellyfish and sea anemones – only develop two distinct layers of cells, equivalent to the outer and inner layers of bilaterians. Cnidarians evolved before bilaterians, but their genetic material is equally complex. So why did these two groups evolve to have different layers of cells? And how exactly do animal embryos develop these distinct layers? To address these questions, Salinas-Saavedra et al. studied embryos of the sea anemone Nematostella vectensis.more »
-
Understanding the intricacies of the brain often requires spotting and tracking specific neurons over time and across different individuals. For instance, scientists may need to precisely monitor the activity of one neuron even as the brain moves and deforms; or they may want to find universal patterns by comparing signals from the same neuron across different individuals. Both tasks require matching which neuron is which in different images and amongst a constellation of cells. This is theoretically possible in certain ‘model’ animals where every single neuron is known and carefully mapped out. Still, it remains challenging: neurons move relative to one another as the animal changes posture, and the position of a cell is also slightly different between individuals. Sophisticated computer algorithms are increasingly used to tackle this problem, but they are far too slow to track neural signals as real-time experiments unfold. To address this issue, Yu et al. designed a new algorithm based on the Transformer, an artificial neural network originally used to spot relationships between words in sentences. To learn relationships between neurons, the algorithm was fed hundreds of thousands of ‘semi-synthetic’ examples of constellations of neurons. Instead of painfully collated actual experimental data, these datasets weremore »
-
Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degreesmore »