skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing Equid Body Mass Estimate Equations on Modern Zebras—With Implications to Understanding the Relationship of Body Size, Diet, and Habitats of Equus in the Pleistocene of Europe
The monodactyl horses of the genus Equus originated in North America during the Pliocene, and from the beginning of the Pleistocene, they have been an essential part of the large ungulate communities of Europe, North America and Africa. Understanding how body size of Equus species evolved and varied in relation to changes in environments and diet thus forms an important part of understanding the dynamics of ungulate body size variation in relation to Pleistocene paleoenvironmental changes. Here we test previously published body mass estimation equations for the family Equidae by investigating how accurately different skeletal and dental measurements estimate the mean body mass (and body mass range) reported for extant Grevy’s zebra (Equus grevyi) and Burchell’s zebra (Equus quagga). Based on these tests and information on how frequently skeletal elements occur in the fossil record, we construct a hierarchy of best practices for the selection of body mass estimation equations in Equus. As a case study, we explore body size variation in Pleistocene European Equus paleopopulations in relation to diet and vegetation structure in their paleoenvironments. We show a relationship between diet and body size in Equus: very large-sized species tend to have more browse-dominated diets than small and medium-sized species, and paleovegetation proxies indicate on average more open and grass-rich paleoenvironments for small-sized, grazing species of Equus. When more than one species of Equus co-occur sympatrically, the larger species tend to be less abundant and have more browse-dominated diets than the smaller species. We suggest that body size variation in Pleistocene Equus was driven by a combined effect of resource quality and availability, partitioning of habitats and resources between species, and the effect of environmental openness and group size on the body size of individuals  more » « less
Award ID(s):
1759882
PAR ID:
10230562
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers
Volume:
26February2021
ISSN:
0160-9009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The composition of mammalian gut microbiomes is highly conserved within species, yet the mechanisms by which microbiome composition is transmitted and maintained within lineages of wild animals remain unclear. Mutually compatible hypotheses exist, including that microbiome fidelity results from inherited dietary habits, shared environmental exposure, morphophysiological filtering and/or maternal effects. Interspecific hybrids are a promising system in which to interrogate the determinants of microbiome composition because hybrids can decouple traits and processes that are otherwise co‐inherited in their parent species. We used a population of free‐living hybrid zebras (Equus quagga×grevyi) in Kenya to evaluate the roles of these four mechanisms in regulating microbiome composition. We analysed faecal DNA for both thetrnL‐P6 and the 16S rRNA V4 region to characterize the diets and microbiomes of the hybrid zebra and of their parent species, plains zebra (E. quagga) and Grevy's zebra (E. grevyi). We found that both diet and microbiome composition clustered by species, and that hybrid diets and microbiomes were largely nested within those of the maternal species, plains zebra. Hybrid microbiomes were less variable than those of either parent species where they co‐occurred. Diet and microbiome composition were strongly correlated, although the strength of this correlation varied between species. These patterns are most consistent with the maternal‐effects hypothesis, somewhat consistent with the diet hypothesis, and largely inconsistent with the environmental‐sourcing and morphophysiological‐filtering hypotheses. Maternal transmittance likely operates in conjunction with inherited feeding habits to conserve microbiome composition within species. 
    more » « less
  2. The late Quaternary is characterized by the extinction of many terrestrial megafauna, which included tortoises (Family: Testudinidae). However, limited information is available on how extinction shaped the phenotype of surviving taxa. Here, based on a global dataset of straight carapace length, we investigate the temporal variation, spatial distribution and evolution of tortoise body size over the past 23 million years, thereby capturing the effects of Quaternary extinctions in this clade. We found a significant change in body size distribution characterized by a reduction of both mean body size and maximum body size of extant tortoises relative to fossil taxa. This reduction of body size occurred earlier in mainland (Early Pleistocene 2.588–0.781 Ma) than in island tortoises (Late Pleistocene/Holocene 0.126–0 Ma). Despite contrasting body size patterns between fossil and extant taxa on a spatial scale, tortoise body size showed limited variation over time until this decline. Body size is a fundamental functional trait determining many aspects of species ecologies, with large tortoises playing key roles as ecosystem engineers. As such, the transition from larger sized to smaller sized classes indicated by our findings likely resulted in the homogenization of tortoises' ecological functions and diminished the role of tortoises in structuring the vegetation community. 
    more » « less
  3. Reynolds, Sally (Ed.)
    For many animals, migration is an important strategy for navigating seasonal bottlenecks in resource availability. In the savannas of eastern Africa, herds of grazing animals, including blue wildebeest (Connochaetes taurinus), Thomson's gazelle (Eudorcas thomsonii), and plains zebra (Equus quagga), travel hundreds of kilometers annually tracking suitable forage and water. However, we know nearly nothing about migration among the extinct species that often dominated Late Pleistocene communities. Using serially sampled 87Sr/86Sr and δ13C, we characterize the prehistoric movement and diet of the enigmatic wildebeest Rusingoryx atopocranion from two localities (Karungu and Rusinga Island) in the Lake Victoria Basin of western Kenya. We find clear evidence for migration in all four individuals studied, with three 87Sr/86Sr series demonstrating high-amplitude fluctuations and all falling outside the modeled isoscape 87Sr/86Sr ranges of the fossil localities from which they were recovered. This suggests that R. atopocranion exhibited migratory behavior comparable to that of its closest living relatives in the genus Connochaetes. Additionally, individuals show seasonally-variable δ13C, with a higher browse intake than modern and fossil eastern African alcelaphins indicating behavioral differences among extinct taxa otherwise unrecognized by comparison with extant related species. That this species was highly migratory aligns with its morphology matching that of an open grassland migrant: it had open-adapted postcranial morphology along with a unique cranial structure convergent with lambeosaurine dinosaurs for calling long distances. We further hypothesize that its migratory behavior may be linked to its extinction, as R. atopocranion disappears from the Lake Victoria Basin fossil sequence coincident with the refilling of Lake Victoria sometime after 36 ka, potentially impeding its past migratory routes. This study characterizes migration in an extinct eastern African species for the first time and shapes our ecological understanding of this unique bovid and the ecosystems in which Middle Stone Age humans lived. 
    more » « less
  4. Wittkopp, Patricia (Ed.)
    Abstract The relationship between genotype and phenotype is often mediated by the environment. Moreover, gene-by-environment (GxE) interactions can contribute to variation in phenotypes and fitness. In the last 500 yr, house mice have invaded the Americas. Despite their short residence time, there is evidence of rapid climate adaptation, including shifts in body size and aspects of metabolism with latitude. Previous selection scans have identified candidate genes for metabolic adaptation. However, environmental variation in diet as well as GxE interactions likely impact body mass variation in wild populations. Here, we investigated the role of the environment and GxE interactions in shaping adaptive phenotypic variation. Using new locally adapted inbred strains from North and South America, we evaluated response to a high-fat diet, finding that sex, strain, diet, and the interaction between strain and diet contributed significantly to variation in body size. We also found that the transcriptional response to diet is largely strain-specific, indicating that GxE interactions affecting gene expression are pervasive. Next, we used crosses between strains from contrasting climates to characterize gene expression regulatory divergence on a standard diet and on a high-fat diet. We found that gene regulatory divergence is often condition-specific, particularly for trans-acting changes. Finally, we found evidence for lineage-specific selection on cis-regulatory variation involved in diverse processes, including lipid metabolism. Overlap with scans for selection identified candidate genes for environmental adaptation with diet-specific effects. Together, our results underscore the importance of environmental variation and GxE interactions in shaping adaptive variation in complex traits. 
    more » « less
  5. ABSTRACT The Pleistocene ungulate communities from the western coastal plains of South Africa's Cape Floristic Region (CFR) are diverse and dominated by grazers, in contrast to the region's Holocene and historical faunas, which are relatively species‐poor and dominated by small‐bodied browsers and mixed feeders. An expansion of grassy habitats is clearly implied by the Pleistocene faunas, but the presence of ruminant grazers that cannot survive the summer dry season typical of the region today suggests other important paleoecological changes. Here we use dental ecometrics to explore the paleoecological implications of the region's Pleistocene faunas. We show that the dental traits (hypsodonty and occlusal topography) of the ungulates that occurred historically in the CFR track annual and summer aridity, and we use these relationships to reconstruct past aridity. Our results indicate that the Pleistocene faunas signal paleoenvironments that were on average less arid than today, including during the summer, consistent with other lines of evidence that suggest a higher water table and expansion of well‐watered habitats. Greater water availability can be explained by lower temperature and reduced evapotranspiration during cooler phases of the Pleistocene, probably coupled with enhanced groundwater recharge due to increased winter precipitation. 
    more » « less