Evolutionary innovations have played an important role in shaping the diversity of life on Earth. However, how these innovations arise and their downstream effects on patterns of morphological diversification remain poorly understood. Here, we examine the impact of evolutionary innovation on trait diversification in tetraodontiform fishes (pufferfishes, boxfishes, ocean sunfishes, and allies). This order provides an ideal model system for studying morphological diversification owing to their range of habitats and divergent morphologies, including the fusion of the teeth into a beak in several families. Using three-dimensional geometric morphometric data for 176 extant and fossil species, we examine the effect of skull integration and novel habitat association on the evolution of innovation. Strong integration may be a requirement for rapid trait evolution and facilitating the evolution of innovative structures, like the tetraodontiform beak. Our results show that the beak arose in the presence of highly conserved patterns of integration across the skull, suggesting that integration did not limit the range of available phenotypes to tetraodontiforms. Furthermore, we find that beaks have allowed tetraodontiforms to diversify into novel ecological niches, irrespective of habitat. Our results suggest that general rules pertaining to evolutionary innovation may be more nuanced than previously thought.
- Award ID(s):
- 1852096
- PAR ID:
- 10230577
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 18
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2101330118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Complex structures, like the vertebrate skull, are composed of numerous elements or traits that must develop and evolve in a coordinated manner to achieve multiple functions. The strength of association among phenotypic traits (i.e., integration), and their organization into highly-correlated, semi-independent subunits termed modules, is a result of the pleiotropic and genetic correlations that generate traits. As such, patterns of integration and modularity are thought to be key factors constraining or facilitating the evolution of phenotypic disparity by influencing the patterns of variation upon which selection can act. It is often hypothesized that selection can reshape patterns of integration, parceling single structures into multiple modules or merging ancestrally semi-independent traits into a strongly correlated unit. However, evolutionary shifts in patterns of trait integration are seldom assessed in a unified quantitative framework. Here, we quantify patterns of evolutionary integration among regions of the archosaur skull to investigate whether patterns of cranial integration are conserved or variable across this diverse group. Using high-dimensional geometric morphometric data from 3D surface scans and computed tomography scans of modern birds (n = 352), fossil non-avian dinosaurs (n = 27), and modern and fossil mesoeucrocodylians (n = 38), we demonstrate that some aspects of cranial integration are conserved across these taxonomic groups, despite their major differences in cranial form, function, and development. All three groups are highly modular and consistently exhibit high integration within the occipital region. However, there are also substantial divergences in correlation patterns. Birds uniquely exhibit high correlation between the pterygoid and quadrate, components of the cranial kinesis apparatus, whereas the non-avian dinosaur quadrate is more closely associated with the jugal and quadratojugal. Mesoeucrocodylians exhibit a slightly more integrated facial skeleton overall than the other grades. Overall, patterns of trait integration are shown to be stable among archosaurs, which is surprising given the cranial diversity exhibited by the clade. At the same time, evolutionary innovations such as cranial kinesis that reorganize the structure and function of complex traits can result in modifications of trait correlations and modularity.
-
Abstract Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull‐headed dung beetle
Onthophagus taurus which is characterized by the polyphenic expression of horned (‘major’) and hornless (‘minor’) male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph‐specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph‐based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibiashape was also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition acrossO. taurus populations. We discuss how sexual selection may shape morph‐specific integration, compensation, and allometry across populations. -
Abstract Integration is an essential feature of complex biomechanical systems, with coordination and covariation occurring among and within structural components at time scales that vary from microseconds to deep evolutionary time. Integration has been suggested to both promote and constrain morphological evolution, and the effects of integration on the evolution of structure likely vary by system, clade, historical contingency, and time scale. In this introduction to the 2019 symposium “Multifunctional Structures and Multistructural Functions,” we discuss the role of integration among structures in the context of functional integration and multifunctionality. We highlight articles from this issue of Integrative and Comparative Biology that explore integration within and among kinematics, sensory and motor systems, physiological systems, developmental processes, morphometric dimensions, and biomechanical functions. From these myriad examples it is clear that integration can exist at multiple levels of organization that can interact with adjacent levels to result in complex patterns of structural and functional phenotypes. We conclude with a synthesis of major themes and potential future directions, particularly with respect to using multifunctionality, itself, as a trait in evolutionary analyses.
-
Abstract Species living in distinct habitats often experience unique ecological selective pressures, which can drive phenotypic divergence. However, how ecophenotypic patterns are affected by allometric trends and trait integration levels is less well understood. Here we evaluate the role of allometry in shaping body size and body form diversity in Pristurus geckos utilizing differing habitats. We found that patterns of allometry and integration in body form were distinct in species with different habitat preferences, with ground-dwelling Pristurus displaying the most divergent allometric trend and high levels of integration. There was also strong concordance between intraspecific allometry across individuals and evolutionary allometry among species, revealing that differences in body form among individuals were predictive of evolutionary changes across the phylogeny at macroevolutionary scales. This suggested that phenotypic evolution occurred along allometric lines of least resistance, with allometric trajectories imposing a strong influence on the magnitude and direction of size and shape changes across the phylogeny. When viewed in phylomorphospace, the largest rock-dwelling species were most similar to the smallest ground-dwelling species, and vice versa. Thus, in Pristurus, phenotypic evolution along the differing habitat-based allometric trajectories resulted in similar body forms at differing body sizes in distinct ecological habitats.