skip to main content


Title: A fluorinated phosphite traps alkoxy radicals photogenerated at the air/solid interface of a nanoparticle
Abstract

With interests in alkoxy radical formation on natural and artificial surfaces, a physical‐organic study was carried out with a Hammett series of triaryl phosphites (p‐MeO, H,p‐F, andp‐Cl) to trap adsorbed alkoxy radicals on silica nanoparticles. A mechanism which involves PhC (Me)2O• and EtO• trapping in a cumylethyl peroxide sensitized homolysis reaction is consistent with the results. Thep‐F phosphite was able to indirectly monitor the alkoxy radical formation, and31P NMR readily enabled this exploration, but other phosphites of the series such as thep‐MeO phosphite were limited by hydrolysis reactions catalyzed by surface silanol groups. Fluorinated silica nanoparticles helped to suppress the hydrolysis reaction although adventitious water also plays a role in hindering efficient capture of the alkoxy radicals by the phosphite traps.

 
more » « less
Award ID(s):
1856765
NSF-PAR ID:
10455494
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Physical Organic Chemistry
Volume:
33
Issue:
12
ISSN:
0894-3230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1H‐imidazo[4,5‐f][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm) and have low dark toxicity (EC50 = 58–230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration.

     
    more » « less
  2. Abstract. The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 μg m&minus;3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study.

     
    more » « less
  3. The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2−[CeIV, cerium(IV); OR, –OCH3or –OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV–OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C–H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4+, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C–H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.

     
    more » « less
  4. Abstract

    Five substituted cyclopropenylidene derivatives (c-C3HX, X=CN, OH, F, NH2), all currently undetected in the interstellar medium (ISM), are found herein to have mechanistically viable, gas-phase formation pathways through neutral–neutral additions of ·X ontoc-C3H2. The detection and predicted formation mechanism ofc-C3HC2H introduces a need for the chemistry ofc-C3H2and any possible derivatives to be more fully explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations provide exothermicities of additions of various radical species toc-C3H2, alongside energies of submerged intermediates that are crossed to result in product formation. Of the novel reaction mechanisms proposed, the addition of the cyano radical is the most exothermic at -16.10 kcal mol−1. All five products are found to or are expected to have at least one means of associating barrierlessly to form a submerged intermediate, a requirement for the cold chemistry of the ISM. The energetically allowed additions arise as a result of the strong electrophilicity of the radical species as well as the product stability gained through substituent-ring conjugation.

     
    more » « less
  5. Abstract

    Alkene metathesis with directly fluorinated alkenes is challenging, limiting its application in the burgeoning field of fluoro‐organic chemistry. A new nickel tris(phosphite) fluoro(trifluoromethyl)carbene complex ([P3Ni]=CFCF3) reacts with CF2=CF2(TFE) or CF2=CH2(VDF) to yield both metallacyclobutane and perfluorocarbene metathesis products, [P3Ni]=CF2and CR2=CFCF3(R=F, H). The reaction of [P3Ni]=CFCF3with trifluoroethylene also yields metathesis products, [P3Ni]=CF2andcis/trans‐CFCF3=CFH. However, unlike reactions with TFE and VDF, this reaction forms metallacyclopropanes and fluoronickel alkenyl species, resulting presumably from instability of the expected metallacyclobutanes. DFT calculations and experimental evidence established that the observed metallacyclobutanes arenotintermediates in the formation of the observed metathesis products, thus highlighting a novel variant of the Chauvin mechanism enabled by the disparate four‐coordinate transition states.

     
    more » « less