skip to main content


Title: Preferential N–H⋯:C hydrogen bonding involving ditopic NH -containing systems and N -heterocyclic carbenes
Hydrogen bonding plays a critical role in maintaining order and structure in complex biological and synthetic systems. N -heterocyclic carbenes (NHCs) represent one of the most versatile tools in the synthetic chemistry toolbox, yet their potential as neutral carbon hydrogen bond acceptors remains underexplored. This report investigates this capability in a strategic manner, wherein carbene-based hydrogen bonding can be assessed by use of ditopic NH -containing molecules. N–H bonds are unique as there are three established reaction modes with carbenes: non-traditional hydrogen bonding adducts (X–H⋯:C), salts arising from proton transfer ([H–C] + [X] − ), or amines from insertion of the carbene into the N–H bond. Yet, there are no established rules to predict product distributions or the strength of these associations. Here we seek to correlate the hydrogen bond strength of symmetric and asymmetric ditopic secondary amines with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ( IPr , a representative NHC). In symmetric and asymmetric ditopic amine adducts both the solid-state (hydrogen bond lengths, NHC interior angles) and solution-state ( 1 H Δ δ of NH signals, 13 C signals of carbenic carbon) can be related to the p K a of the parent amine.  more » « less
Award ID(s):
1955845
NSF-PAR ID:
10230614
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
RSC Advances
Volume:
10
Issue:
69
ISSN:
2046-2069
Page Range / eLocation ID:
42164 to 42171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The exceptional stability of N-heterocyclic carbene (NHC) monolayers on gold surfaces and nanoparticles (AuNPs) is enabling new and diverse applications from catalysis to biomedicine. Our understanding of NHC reactivity at surfaces; however, is quite nascent when compared to the long and rich history of NHC ligands in organometallic chemistry. In this work, well-established transmetalation reactions, previously developed for NHC transfer in homogeneous organometallic systems, are explored to determine how they can be used to create carbene functionalized gold surfaces. Two classes of NHCs, based on imidazole and benzimidazole scaffolds, were tested. The resulting AuNP surfaces were analyzed using X-ray photoelectron spectroscopy (XPS), laser desorption ionization mass spectrometry (LDI-MS), and surface-enhanced Raman spectroscopy (SERS). Reaction of either a Au( i ) or Ag( i ) isopropyl benzimidazole NHC complex with citrate-capped AuNPs yields, in both cases, a chemisorbed NHC that is bound through a Au adatom. Theoretical calculations additionally illustrate that binding through the Au adatom is favored by more than 10 kcal mol −1 , in good agreement with experiments. Surprisingly, reaction of Au( i ), Ag( i ), and Cu( i ) diisopropylphenyl imidazole NHCs do not follow the same pattern. The Cu complex undergoes transmetalation with very little deposition of Cu; whereas, unexpectedly, the Ag complex foregoes transmetalation and instead adducts to the AuNP with retention of the Ag–C bond. Theoretical calculations illustrate that the imidazole ligand affords significant dispersion interactions with the gold surface, which may stabilize binding through the Ag adatom motif, despite its less favorable bonding energies. Taken together these results suggest a unique ability to tune the reactivity by changing the carbene structure and raise critical questions about how established transmetalation reactions in organometallic chemistry can be applied to form NHC functionalized surfaces. 
    more » « less
  2. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR of and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron withdrawing substituents tend to strengthen the interaction. 
    more » « less
  3. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes (NHCs) to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (HEP) is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron donating substituents tend to strengthen the interaction. 
    more » « less
  4. Asymmetric reactions that convert racemic mixtures into enantioenriched amines are of significant importance due to the prevalence of amines in pharmaceuticals, with about 60% of drug candidates containing tertiary amines. Although transition metal catalyzed allylic substitution processes have been developed to provide access to enantioenriched α-disubstituted allylic amines, enantioselective synthesis of sterically demanding α-tertiary amines with a tetrasubstituted carbon stereocenter remains a major challenge. Herein, we report a chiral diene-ligated rhodium catalyzed asymmetric substitution of racemic tertiary allylic trichloroacetimidates with aliphatic secondary amines to afford α-trisubstituted-α-tertiary amines. Mechanistic investigation is conducted using synergistic experimental and computational studies. Density functional theory calculations show that the chiral diene-ligated rhodium promotes the ionization of tertiary allylic substrates to form both anti and syn π-allyl intermediates. The anti π-allyl pathway proceeds through a higher energy than the syn π-allyl pathway. The rate of conversion of the less reactive π-allyl intermediate to the more reactive isomer via π−σ−π interconversion was faster than the rate of nucleophilic attack onto the more reactive intermediate. These data imply that the Curtin−Hammett conditions are met in the amination reaction, leading to dynamic kinetic asymmetric transformation. Computational studies also show that hydrogen bonding interactions between β-oxygen of allylic substrate and amine-NH greatly assist the delivery of amine nucleophile onto more hindered internal carbon of the π-allyl intermediate. The synthetic utility of the current methodology is showcased by efficient preparation of α-trisubstituted-α-tertiary amines featuring pharmaceutically relevant secondary amine cores with good yields and excellent selectivities (branched−linear >99:1, up to 99% enantiomeric excess). 
    more » « less
  5. Abstract

    A combined synthetic and theoretical investigation of N‐heterocyclic carbene (NHC) adducts of magnesium amidoboranes is presented, which involves a rare example of reversible migratory insertion within a normal valents‐block element. The reaction of (NHC)Mg(N(SiMe3)2)2(1) and dimethylamine borane yields the tris(amide) adduct (NHC−BN)Mg(NMe2BH3)(N(SiMe3)2) (2; NHC−BN = NHC−BH2NMe2). In addition to Me2N=BH2capture at theNHCC−Mg bond, mechanistic investigations suggest the likelihood of aminoborane migratory insertion from an RMg(NMe2BH2NMe2BH3) intermediate. To elucidate these processes, the carbene complexes (NHC)Mg(NMe2BH3)2(8) and (NHC)Mg(NMe2BH2NMe2BH3)2(9) were synthesized, and a dynamic migration of Me2N=BH2between Mg−N andNHCC−Mg bonds was observed in9. This unusual reversible migratory insertion is presumably induced by dissimilar charge localization in the{NMe2BH2NMe2BH3} anion, as well as the capacity of NHCs to reversibly capture Me2N=BH2in the presence of Lewis acidic magnesium species.

     
    more » « less