skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consistency of Semi-Supervised Learning Algorithms on Graphs: Probit and One-Hot Methods
Graph-based semi-supervised learning is the problem of propagating labels from a small number of labelled data points to a larger set of unlabelled data. This paper is concerned with the consistency of optimization-based techniques for such problems, in the limit where the labels have small noise and the underlying unlabelled data is well clustered. We study graph-based probit for binary classification, and a natural generalization of this method to multi-class classification using one-hot encoding. The resulting objective function to be optimized comprises the sum of a quadratic form defined through a rational function of the graph Laplacian, involving only the unlabelled data, and a fidelity term involving only the labelled data. The consistency analysis sheds light on the choice of the rational function defining the optimization.  more » « less
Award ID(s):
1818977
PAR ID:
10230711
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
21
ISSN:
1533-7928
Page Range / eLocation ID:
1-55
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of domain adaptation is to train a high-performance predictive model on the target domain data by using knowledge from the source domain data, which has different but related data distribution. In this paper, we consider unsupervised domain adaptation where we have labelled source domain data but unlabelled target domain data. Our solution to unsupervised domain adaptation is to learn a domain- invariant representation that is also category discriminative. Domain- invariant representations are realized by minimizing the domain discrepancy. To minimize the domain discrepancy, we propose a novel graph- matching metric between the source and target domain representations. Minimizing this metric allows the source and target representations to be in support of each other. We further exploit confident unlabelled target domain samples and their pseudo-labels to refine our proposed model. We expect the refining step to improve the performance further. This is validated by performing experiments on standard image classification adaptation datasets. Results showed our proposed approach out-perform previous domain-invariant representation learning approaches. 
    more » « less
  2. Abstract In the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of processing images, the absence or incompleteness of labelled data and the expertise required to label this type of data impede the creation of useful datasets for biocuration. From a multi‐year collaboration with biocurators and text‐mining researchers, we derive an iterative visual analytics and active learning (AL) strategy to address these challenges. We implement this strategy in a system called BI‐LAVA—Biocuration with Hierarchical Image Labelling through Active Learning and Visual Analytics. BI‐LAVA leverages a small set of image labels, a hierarchical set of image classifiers and AL to help model builders deal with incomplete ground‐truth labels, target a hierarchical taxonomy of image modalities and classify a large pool of unlabelled images. BI‐LAVA's front end uses custom encodings to represent data distributions, taxonomies, image projections and neighbourhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human–machine approach successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating and improving data quality in labelled and unlabelled collections. 
    more » « less
  3. Macromolecular structure classification from cryo-electron tomography (cryo-ET) data is important for understanding macro-molecular dynamics. It has a wide range of applications and is essential in enhancing our knowledge of the sub-cellular environment. However, a major limitation has been insufficient labelled cryo-ET data. In this work, we use Contrastive Self-supervised Learning (CSSL) to improve the previous approaches for macromolecular structure classification from cryo-ET data with limited labels. We first pretrain an encoder with unlabelled data using CSSL and then fine-tune the pretrained weights on the downstream classification task. To this end, we design a cryo-ET domain-specific data-augmentation pipeline. The benefit of augmenting cryo-ET datasets is most prominent when the original dataset is limited in size. Overall, extensive experiments performed on real and simulated cryo-ET data in the semi-supervised learning setting demonstrate the effectiveness of our approach in macromolecular labeling and classification. 
    more » « less
  4. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets in terms of accuracy and several fairness metrics. 
    more » « less
  5. Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets in terms of accuracy and several fairness metrics. 
    more » « less