skip to main content

Title: Tunable layered-magnetism–assisted magneto-Raman effect in a two-dimensional magnet CrI 3
We used a combination of polarized Raman spectroscopy experiment and model magnetism–phonon coupling calculations to study the rich magneto-Raman effect in the two-dimensional (2D) magnet CrI 3 . We reveal a layered-magnetism–assisted phonon scattering mechanism below the magnetic onset temperature, whose Raman excitation breaks time-reversal symmetry, has an antisymmetric Raman tensor, and follows the magnetic phase transitions across critical magnetic fields, on top of the presence of the conventional phonon scattering with symmetric Raman tensors in N -layer CrI 3 . We resolve in data and by calculations that the first-order A g phonon of the monolayer splits into an N -fold multiplet in N -layer CrI 3 due to the interlayer coupling ( N ≥ 2 ) and that the phonons within the multiplet show distinct magnetic field dependence because of their different layered-magnetism–phonon coupling. We further find that such a layered-magnetism–phonon coupled Raman scattering mechanism extends beyond first-order to higher-order multiphonon scattering processes. Our results on the magneto-Raman effect of the first-order phonons in the multiplet and the higher-order multiphonons in N -layer CrI 3 demonstrate the rich and strong behavior of emergent magneto-optical effects in 2D magnets and underline the unique opportunities of spin–phonon physics in van der Waals layered magnets.  more » « less
Award ID(s):
1749774 1741618
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
24664 to 24669
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic excitations in van der Waals (vdW) materials, especially in the two-dimensional (2D) limit, are an exciting research topic from both the fundamental and applied perspectives. Using temperature-dependent, magneto-Raman spectroscopy, we identify the hybridization of two-magnon excitations with two phonons in manganese phosphorus triselenide (MnPSe 3 ), a magnetic vdW material that hosts in-plane antiferromagnetism. Results from first-principles calculations of the phonon and magnon spectra further support our identification. The Raman spectra’s rich temperature dependence through the magnetic transition displays an avoided crossing behavior in the phonons’ frequency and a concurrent decrease in their lifetimes. We construct a model based on the interaction between a discrete level and a continuum that reproduces these observations. Our results imply a strong hybridization between each phonon and a two-magnon continuum. This work demonstrates that the magnon-phonon interactions can be observed directly in Raman scattering and provides deep insight into these interactions in 2D magnetic materials. 
    more » « less
  2. Abstract The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi 2 Te 4 . Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise ‘forbidden’ by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi 2 Te 4 , the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases. 
    more » « less
  3. We apply the density-functional theory to study various phases (including non-magnetic (NM), anti-ferromagnetic (AFM), and ferromagnetic (FM)) in monolayer magnetic chromium triiodide (CrI 3 ), a recently fabricated 2D magnetic material. It is found that: (1) the introduction of magnetism in monolayer CrI 3 gives rise to metal-to-semiconductor transition; (2) the electronic band topologies as well as the nature of direct and indirect band gaps in either AFM or FM phases exhibit delicate dependence on the magnetic ordering and spin–orbit coupling; and (3) the phonon modes involving Cr atoms are particularly sensitive to the magnetic ordering, highlighting distinct spin–lattice and spin–phonon coupling in this magnet. First-principles simulations of the Raman spectra demonstrate that both frequencies and intensities of the Raman peaks strongly depend on the magnetic ordering. The polarization dependent A 1g modes at 77 cm −1 and 130 cm −1 along with the E g mode at about 50 cm −1 in the FM phase may offer a useful fingerprint to characterize this material. Our results not only provide a detailed guiding map for experimental characterization of CrI 3 , but also reveal how the evolution of magnetism can be tracked by its lattice dynamics and Raman response. 
    more » « less
  4. Abstract

    The discovery of two-dimensional systems hosting intrinsic magnetic order represents a seminal addition to the rich landscape of van der Waals materials. CrI3is an archetypal example, where the interdependence of structure and magnetism, along with strong light-matter interactions, provides a new platform to explore the optical control of magnetic and vibrational degrees of freedom at the nanoscale. However, the nature of magneto-structural coupling on its intrinsic ultrafast timescale remains a crucial open question. Here, we probe magnetic and vibrational dynamics in bulk CrI3using ultrafast optical spectroscopy, revealing spin-flip scattering-driven demagnetization and strong transient exchange-mediated interactions between lattice vibrations and spin oscillations. The latter yields a coherent spin-coupled phonon mode that is highly sensitive to the driving pulse’s helicity in the magnetically ordered phase. Our results elucidate the nature of ultrafast spin-lattice coupling in CrI3and highlight its potential for applications requiring high-speed control of magnetism at the nanoscale.

    more » « less
  5. Abstract

    Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single‐molecule magnets (SMMs). Spin‐phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin‐phonon coupling in molecules is challenging. We have found that far‐IR magnetic spectra (FIRMS) of Co(PPh3)2X2(Co‐X; X=Cl, Br, I) reveal rarely observed spin‐phonon coupling as avoided crossings between magnetic andu‐symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero‐field split (ZFS) levels of theS=3/2 electronic ground state were probed by INS, high‐frequency and ‐field EPR (HFEPR), FIRMS, and frequency‐domain FT terahertz EPR (FD‐FT THz‐EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) andgvalues. Ligand‐field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities inCo‐X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin‐phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.

    more » « less