skip to main content


Title: Does Formation of Multicellular Colonies by Choanoflagellates Affect Their Susceptibility to Capture by Passive Protozoan Predators?
Abstract

Microbial eukaryotes, critical links in aquatic food webs, are unicellular, but some, such as choanoflagellates, form multicellular colonies. Are there consequences to predator avoidance of being unicellular vs. forming larger colonies? Choanoflagellates share a common ancestor with animals and are used as model organisms to study the evolution of multicellularity. Escape in size from protozoan predators is suggested as a selective factor favoring evolution of multicellularity. Heterotrophic protozoans are categorized as suspension feeders, motile raptors, or passive predators that eat swimming prey which bump into them. We focused on passive predation and measured the mechanisms responsible for the susceptibility of unicellular vs. multicellular choanoflagellates,Salpingoeca helianthica, to capture by passive heliozoan predators,Actinosphaerium nucleofilum, which trap prey on axopodia radiating from the cell body. Microvideography showed that unicellular and colonial choanoflagellates entered the predator's capture zone at similar frequencies, but a greater proportion of colonies contacted axopodia. However, more colonies than single cells were lost during transport by axopodia to the cell body. Thus, feeding efficiency (proportion of prey entering the capture zone that were engulfed in phagosomes) was the same for unicellular and multicellular prey, suggesting that colony formation is not an effective defense against such passive predators.

 
more » « less
Award ID(s):
1655318
NSF-PAR ID:
10456306
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Eukaryotic Microbiology
Volume:
67
Issue:
5
ISSN:
1066-5234
Page Range / eLocation ID:
p. 555-565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Choanoflagellates, unicellular eukaryotes that can form multicellular colonies by cell division and that share a common ancestor with animals, are used as a model system to study functional consequences of being unicellular versus colonial. This review examines performance differences between unicellular and multicellular choanoflagellates in swimming, feeding, and avoiding predation, to provide insights about possible selective advantages of being multicellular for the protozoan ancestors of animals. Each choanoflagellate cell propels water by beating a single flagellum and captures bacterial prey on a collar of microvilli around the flagellum. Formation of multicellular colonies does not improve the swimming performance, but the flux of prey‐bearing water to the collars of some of the cells in colonies of certain configurations can be greater than for single cells. Colony geometry appears to affect whether cells in colonies catch more prey per cell per time than do unicellular choanoflagellates. Although multicellular choanoflagellates show chemokinetic behavior in response to oxygen, only the unicellular dispersal stage (fast swimmers without collars) use pH signals to aggregate in locations where bacterial prey might be abundant. Colonies produce larger hydrodynamic signals than do single cells, and raptorial protozoan predators capture colonies while ignoring single cells. In contrast, ciliate predators entrain both single cells and colonies in their feeding currents, but reject larger colonies, whereas passive heliozoan predators show no preference. Thus, the ability of choanoflagellate cells to differentiate into different morphotypes, including multicellular forms, in response to variable aquatic environments might have provided a selective advantage to the ancestors of animals.

     
    more » « less
  2. Abstract

    Identification of the molecular networks that facilitated the evolution of multicellular animals from their unicellular ancestors is a fundamental problem in evolutionary cellular biology. Choanoflagellates are recognized as the closest extant nonmetazoan ancestors to animals. These unicellular eukaryotes can adopt a multicellular‐like “rosette” state. Therefore, they are compelling models for the study of early multicellularity. Comparative studies revealed that a number of putative human orthologs are present in choanoflagellate genomes, suggesting that a subset of these genes were necessary for the emergence of multicellularity. However, previous work is largely based on sequence alignments alone, which does not confirm structural nor functional similarity. Here, we focus on the PDZ domain, a peptide‐binding domain which plays critical roles in myriad cellular signaling networks and which underwent a gene family expansion in metazoan lineages. Using a customized sequence similarity search algorithm, we identified 178 PDZ domains in theMonosiga brevicollisproteome. This includes 11 previously unidentified sequences, which we analyzed using Rosetta and homology modeling. To assess conservation of protein structure, we solved high‐resolution crystal structures of representativeM. brevicollisPDZ domains that are homologous to human Dlg1 PDZ2, Dlg1 PDZ3, GIPC, and SHANK1 PDZ domains. To assess functional conservation, we calculated binding affinities for mbGIPC, mbSHANK1, mbSNX27, and mbDLG‐3 PDZ domains fromM. brevicollis. Overall, we find that peptide selectivity is generally conserved between these two disparate organisms, with one possible exception, mbDLG‐3. Overall, our results provide novel insight into signaling pathways in a choanoflagellate model of primitive multicellularity.

     
    more » « less
  3. Abstract

    The transition from unicellular to multicellular life was one of a few major events in the history of life that created new opportunities for more complex biological systems to evolve. Predation is hypothesized as one selective pressure that may have driven the evolution of multicellularity. Here we show thatde novoorigins of simple multicellularity can evolve in response to predation. We subjected outcrossed populations of the unicellular green algaChlamydomonas reinhardtiito selection by the filter-feeding predatorParamecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in unselected control populations within ~750 asexual generations. Considerable variation exists in the evolved multicellular life cycles, with both cell number and propagule size varying among isolates. Survival assays show that evolved multicellular traits provide effective protection against predation. These results support the hypothesis that selection imposed by predators may have played a role in some origins of multicellularity.

     
    more » « less
  4. Abstract

    In sunlit waters, significant predation is performed by unicellular, phagotrophic mixotrophs, that is, predators that also possess plastids. The success of a mixotrophic lifestyle will depend in part on how well mixotrophs acquire prey relative to specialized heterotrophs. Likewise, consequences of mixotrophy for productivity and element cycling will depend on the rate and efficiency at which mixotrophs consume prey biomass relative to heterotrophs. However, trait differences between mixotrophs and heterotrophs are not well characterized. In addition, cell size of mixotrophs varies widely, and constitutive mixotrophs include small flagellates deriving from diverse taxa, while larger species are primarily dinoflagellates. To determine whether similar constraints apply to phagotrophs across this broad range of size and taxa, we compiled 83 measurements of flagellate functional responses and compared maximum clearance rates (Cmax) and maximum ingestion rates (Imax) between trophic modes. We found that the average mixotroph has a 3.7‐fold lowerCmaxand 7.8‐fold lowerImaxthan the average heterotroph, after controlling for cell size. The smaller penalty forCmaxsuggests that relative fitness of mixotrophs will be enhanced under dilute prey concentrations that are common in pelagic ecosystems. We also find that growth efficiency is greater for mixotrophs and for flagellates with lowerCmax, indicating a spectrum of trophic strategies that may be driven by phototrophy vs. phagotrophy allocation as well as fast vs. slow metabolic variation. Allometric scaling shows thatImaxis constrained by a common relationship among dinoflagellates and other taxa, but dinoflagellates achieve a greater volume‐specificCmax. These results should aid in interpreting protistan communities and modeling mixotrophy.

     
    more » « less
  5. Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta. We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis. 
    more » « less