skip to main content


Title: Exploring Technology Design for Students with Vision Impairment in the Classroom and Remotely
Teachers of the Visually Impaired (TVIs) teach academic and functional living skills simultaneously to prepare students with vision impairment to be successful and independent. Current educational tools primarily focus on academic instruction rather than this multifaceted approach needed for students. Our work aims to understand how technology can integrate behavioral skills, like independence, and support TVIs in their preferred teaching strategy. We observed elementary classrooms at a school for the blind for six weeks to study how educators design lessons and use technology to supplement their instruction in different subjects. After the observational study, we conducted remote interviews with educators to understand how technology can support students in building academic and behavioral skills in-person and remotely. Educators suggested incorporating audio feedback that motivates students to play and learn consistently, student progress tracking for parents and educators, and designing features that help students build independence and develop collaborative skills.  more » « less
Award ID(s):
1652907
NSF-PAR ID:
10230839
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite various efforts to broaden participation, racially marginalized students (i.e., Black, Hispanic/Latinx, and American Indian/Alaskan Native identifying people) continue to be underrepresented in Science, Technology, Engineering, and Math (STEM) fields and careers. Mentoring is recognized as a mechanism that has been shown to support the persistence and success of racially marginalized students in STEM through providing relevant resources, psychosocial support, and fostering identity development. This quantitative work aims to understand the mentoring competencies of mentors who support racially marginalized students in STEM. To promote effective mentoring, it is essential to understand the mentoring competencies of mentors from the perspective of both mentors and mentees. Understanding how mentees perceive various mentoring competencies can help mentors understand deficiencies in their skills to improve their mentoring practices. Using survey data collected from mentors and racially marginalized mentees, we assessed the mentoring competencies of mentors from the perspective of both mentors and mentees. The survey data includes demographic and academic information about mentors and mentees. In addition, using a pre-validated survey instrument, mentors and mentees rated the mentoring competencies of the mentors on a Likert scale across five constructs of mentoring. The five mentoring constructs include maintaining effective communication, aligning expectations, assessing understanding, fostering independence, and promoting professional development. Each construct consists of multiple items for a total of 26 survey items. We compared the mentors’ self-rated competencies with the ratings provided by the mentees to identify differences across demographics. Preliminary findings identify differences in the mentoring competencies of mentors from the perspective of both mentors and mentees. Recommendations for research and practice are also presented. 
    more » « less
  2. Abstract

    Given the large variation in conceptualizations and enactment of K− 12integrated STEM, this paper puts forth a detailed conceptual framework for K− 12integrated STEM education that can be used by researchers, educators, and curriculum developers as a common vision. Our framework builds upon the extant integrated STEM literature to describe seven central characteristics of integrated STEM: (a) centrality of engineering design, (b) driven by authentic problems, (c) context integration, (d) content integration, (e) STEM practices, (f) twenty-first century skills, and (g) informing students about STEM careers. Our integrated STEM framework is intended to provide more specific guidance to educators and support integrated STEM research, which has been impeded by the lack of a deep conceptualization of the characteristics of integrated STEM. The lack of a detailed integrated STEM framework thus far has prevented the field from systematically collecting data in classrooms to understand the nature and quality of integrated STEM instruction; this delays research related to the impact on student outcomes, including academic achievement and affect. With the framework presented here, we lay the groundwork for researchers to explore the impact of specific aspects of integrated STEM or the overall quality of integrated STEM instruction on student outcomes.

     
    more » « less
  3. The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but have had no significant impact in the student performance in physics. Our hypothesis is that students, in addition to having limited understanding of calculus, struggle to understand the fundamental principles of physics and thus cannot apply their knowledge of math to theories in physics to solve problems. This work-in-progress paper describes an inquiry-based hands-on pre-physics course for first-year students as part of the FYrE@ECST program. The course is intended to prepare students for the calculus-based mechanics course in physics and covers about half of the competencies of a classical mechanics course, with focuses on the fundamental concepts of mechanics (i.e. Newton’s Laws, Types of forces, vectors, free-body diagrams, position, velocity and acceleration). Equations are only introduced in the second half of the semester, while the first half is directed to help students develop a deep understanding of these fundamental concepts. During classes, students run simple experiments, watch segments of movies and cartoons and are asked questions (written and orally) which can guide them to think intuitively and critically. A think-pair-share mode of instruction is implemented to promote inquiry and discussion. Students work in groups of five to discuss and solve problems, carry out experiments to better understand processes and systems, and share what they learned with the whole class. The paper presents preliminary results on student achievement. 
    more » « less
  4. The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. The “for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a community of practice that would prepare and support teachers with varying degrees of engineering training instruction as they implemented the yearlong course. The perspectives of four out of nine educators were examined during a weeklong, intensive E4USA PD. Two of four educators were considered ‘novices’; one with a background in music and the other in history. The remaining two educators were deemed ‘veterans’ with a total of 15 years of experience as engineers and more than 20 years as engineering educators. Data sources consist of focus groups, surveys, and artifacts created during the PD (e.g., educators’ responses to reflection prompts and letters written to welcome the next cohort). Focus group data is currently being analyzed using inductive coding and the constant comparative method in order to identify emergent themes that speak to the past experience or inexperience of educators with engineering. Artifacts were used to: 1) Triangulate the findings generated from the analysis of focus group, and 2) Further understand how the veteran educators supported the novice educators. We will also use quantitative survey data to examine descriptive statistics, observed score bivariate correlations, and differences in mean scores across novices and veterans to further examine potential common and unique experiences for these educators. The results aim to highlight how the inclusion of educators with a broad spectrum of past experiences with engineering and engineering education can increase educators’ empathy towards students who may be equally hesitant about engineering. The findings from this study are expected to result in implications for how PD and a community of practice may be developed to allow for reciprocal support and mentoring. Results will inform future efforts of E4USA and aim to change the structure of high school engineering education nationwide. 
    more » « less
  5. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less