- Award ID(s):
- 2006154
- Publication Date:
- NSF-PAR ID:
- 10230891
- Journal Name:
- The Journal of Physical Chemistry B
- ISSN:
- 1520-6106
- Sponsoring Org:
- National Science Foundation
More Like this
-
We demonstrate a host-guest molecular recognition approach to advance double electron-electron resonance (DEER) distance measurements of spin-labeled proteins. We synthesized an iodoacetamide (IA) derivative of 2,6-diazaadamantane nitroxide (DZD) spin label that could be doubly incorporated into T4 Lysozyme (T4L) by site-directed spin labeling (SDSL) with efficiency up to 50% per cysteine. The rigidity of the fused ring structure and absence of mobile methyl groups increase the spin echo dephasing time (Tm) at temperatures above 80 K. This enables DEER measurements of distances >4 nm in DZD labeled-T4L in glycerol/water at temperatures up to 150 K, with increased sensitivity compared to common spin label such as MTSL. Addition of β-cyclodextrin (β-CD) reduces the rotational correlation time of the label, slightly increases Tm, and most importantly, narrows (and slightly lengthens) the inter-spin distance distributions. The distance distributions are in good agreement with simulated distance distributions obtained by rotamer libraries. These results provide a foundation for developing supramolecular recognition to facilitate long-distance DEER measurements at near physiological temperatures.
-
Abstract In Escherichia coli, inconsistencies between in vitro tRNA aminoacylation measurements and in vivo protein synthesis demands were postulated almost 40 years ago, but have proven difficult to confirm. Whole-cell modeling can test whether a cell behaves in a physiologically correct manner when parameterized with in vitro measurements by providing a holistic representation of cellular processes in vivo. Here, a mechanistic model of tRNA aminoacylation, codon-based polypeptide elongation, and N-terminal methionine cleavage was incorporated into a developing whole-cell model of E. coli. Subsequent analysis confirmed the insufficiency of aminoacyl-tRNA synthetase kinetic measurements for cellular proteome maintenance, and estimated aminoacyl-tRNA synthetase kcats that were on average 7.6-fold higher. Simulating cell growth with perturbed kcats demonstrated the global impact of these in vitro measurements on cellular phenotypes. For example, an insufficient kcat for HisRS caused protein synthesis to be less robust to the natural variability in aminoacyl-tRNA synthetase expression in single cells. More surprisingly, insufficient ArgRS activity led to catastrophic impacts on arginine biosynthesis due to underexpressed N-acetylglutamate synthase, where translation depends on repeated CGG codons. Overall, the expanded E. coli model deepens understanding of how translation operates in an in vivo context.
-
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4more »
-
Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enablemore »
-
Abstract Site-directed spin labeling (SDSL) ESR is a valuable tool to probe protein systems that are not amenable to characterization by x-ray crystallography, NMR or EM. While general principles that govern the shape of SDSL ESR spectra are known, its precise relationship with protein structure and dynamics is still not fully understood. To address this problem, we designed seven variants of GB1 domain bearing R1 spin label and recorded the corresponding MD trajectories (combined length 180 μs). The MD data were subsequently used to calculate time evolution of the relevant spin density matrix and thus predict the ESR spectra. The simulated spectra proved to be in good agreement with the experiment. Further analysis confirmed that the spectral shape primarily reflects the degree of steric confinement of the R1 tag and, for the well-folded protein such as GB1, offers little information on local backbone dynamics. The rotameric preferences of R1 side chain are determined by the type of the secondary structure at the attachment site. The rotameric jumps involving dihedral angles χ1and χ2are sufficiently fast to directly influence the ESR lineshapes. However, the jumps involving multiple dihedral angles tend to occur in (anti)correlated manner, causing smaller-than-expected movements of the R1 proxylmore »