skip to main content

Title: Vertically aligned nanocomposite (BaTiO 3 ) 0.8  : (La 0.7 Sr 0.3 MnO 3 ) 0.2 thin films with anisotropic multifunctionalities
A new two-phase BaTiO 3  : La 0.7 Sr 0.3 MnO 3 nanocomposite system with a molar ratio of 8 : 2 has been grown on single crystal SrTiO 3 (001) substrates using a one-step pulsed laser deposition technique. Vertically aligned nanocomposite thin films with ultra-thin La 0.7 Sr 0.3 MnO 3 pillars embedded in the BaTiO 3 matrix have been obtained and the geometry of the pillars varies with deposition frequency. The room temperature multiferroic properties, including ferromagnetism and ferroelectricity, have been demonstrated. Anisotropic ferromagnetism and dielectric constants have been observed, which can be tuned by deposition frequencies. The tunable anisotropic optical properties originated from the conducting pillars in the dielectric matrix structure, which cause different electron transport paths. In addition, tunable band gaps have been discovered in the nanocomposites. This multiferroic and anisotropic system has shown its great potentials towards multiferroics and non-linear optics.
; ; ; ; ; ;
Award ID(s):
1902644 1565822 1809520
Publication Date:
Journal Name:
Nanoscale Advances
Page Range or eLocation-ID:
3276 to 3283
Sponsoring Org:
National Science Foundation
More Like this
  1. Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics.
  2. Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories. In this work, an oxide–metal vertically aligned nanocomposite (VAN) platform has been used to successfully demonstrate self-assembled multiferroic BaTiO 3 –Fe (BTO–Fe) nanocomposite films with high structural anisotropy on Si substrates. The effects of various buffer layers on the crystallinity, microstructure, and physical properties of the BTO–Fe films have been explored. With an appropriate buffer layer design, e.g. SrTiO 3 /TiN bilayer buffer, the epitaxial quality of the BTO matrix and the anisotropy of the Fe nanopillars can be improved greatly, which in turn enhances the physical properties, including the ferromagnetic, ferroelectric, and optical response of the BTO–Fe thin films. This unique combination of properties integrated on Si offers a promising approach in the design of multifunctional nanocomposites for Si-based memories and optical devices.
  3. Sr(Ti 0.3 Fe 0.7 )O 3−δ (STF) and the associated exsolution electrodes Sr 0.95 (Ti 0.3 Fe 0.63 Ru 0.07 )O 3−δ (STFR), or Sr 0.95 (Ti 0.3 Fe 0.63 Ni 0.07 )O 3−δ (STFN) are alternatives to Ni-based cermet fuel electrodes for solid oxide electrochemical cells (SOCs). They can provide improved tolerance to redox cycling and fuel impurities, and may allow direct operation with hydrocarbon fuels. However, such perovskite-oxide-based electrodes present processing challenges for co-sintering with thin electrolytes to make fuel electrode supported SOCs. Thus, they have been mostly limited to electrolyte-supported SOCs. Here, we report the first example of the application of perovskite oxide fuel electrodes in novel oxygen electrode supported SOCs (OESCs) with thin YSZ electrolytes, and demonstrate their excellent performance. The OESCs have La 0.8 Sr 0.2 MnO 3−δ –Zr 0.92 Y 0.16 O 2−δ (LSM–YSZ) oxygen electrode-supports that are enhanced via infiltration of SrTi 0.3 Fe 0.6 Co 0.1 O 3−δ , while the fuel electrodes are either Ni-YSZ, STF, STFN, or STFR. Fuel cell power density as high as 1.12 W cm −2 is obtained at 0.7 V and 800 °C in humidified hydrogen and air with the STFR electrode, 60% higher than themore »same cell made with a Ni-YSZ electrode. Electrolysis current density as high as −1.72 A cm −2 is obtained at 1.3 V and 800 °C in 50% H 2 O to 50% H 2 mode; the STFR cell yields a value 72% higher than the same cell made with a Ni-YSZ electrode, and competitive with the widely used conventional Ni-YSZ-supported cells. The high performance is due in part to the low resistance of the thin YSZ electrolyte, and also to the low fuel electrode polarization resistance, which decreases with fuel electrode in the order: Ni-YSZ > STF > STFN > STFR. The high performance of the latter two electrodes is due to exsolution of catalytic metal nanoparticles; the results are discussed in terms of the microstructure and properties of each electrode material, and surface oxygen exchange resistance values are obtained over a range of conditions for STF, STFN, and STFN. The STF fuel electrodes also provide good stability during redox cycling.« less
  4. Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly.
  5. Abstract

    At crystalline interfaces where a valence-mismatch exists, electronic, and structural interactions may occur to relieve the polar mismatch, leading to the stabilization of non-bulk-like phases. We show that spontaneous reconstructions at polar La0.7Sr0.3MnO3interfaces are correlated with suppressed ferromagnetism for film thicknesses on the order of a unit cell. We investigate the structural and magnetic properties of valence-matched La0.7Sr0.3CrO3/La0.7Sr0.3MnO3interfaces using a combination of high-resolution electron microscopy, first principles theory, synchrotron X-ray scattering and magnetic spectroscopy and temperature-dependent magnetometry. A combination of an antiferromagnetic coupling between the La0.7Sr0.3CrO3and La0.7Sr0.3MnO3layers and a suppression of interfacial polar distortions are found to result in robust long-range ferromagnetic ordering for ultrathin La0.7Sr0.3MnO3. These results underscore the critical importance of interfacial structural and magnetic interactions in the design of devices based on two-dimensional oxide magnetic systems.