skip to main content


Title: Emergent Hydrodynamics and Skimming Flow Over Mussel Covered Beds in Rivers
Abstract

Freshwater mussels are dominant ecosystem engineers in many streams throughout North America, yet they remain among the world's most imperiled fauna. Extensive research has quantified the ecological role of mussels in aquatic habitats, but little is known about the interaction between mussels and their surrounding physical and hydrodynamic habitat. Here the physical interactions of mussels with near‐bed flow are investigated in an experimental channel using model mussels. The results show that (1) mussels disrupt the distributions and magnitudes of time‐averaged values of longitudinal flow velocity and Reynolds shear stress depending on mussel density, and (2) at densities of approximately 25 mussels m−2and greater, a hydrodynamic transition occurs where the maximum Reynolds shear stress is displaced from the bed to the height of the mussel canopy, near‐bed longitudinal flow velocity is reduced, and average turbulent shear stresses acting on the mussels are reduced by as much as 64%, thus markedly decreasing the dislodgement potential of the mussels by these stresses. These results provide strong empirical evidence for a positive density‐dependent effect related to flow‐organism interactions and their ecological success, such as enhancing river bed hydrodynamic habitat complexity or decreasing the turbulent shear stresses acting to dislodge mussels from the river bed. This information will improve the understanding of the long‐term persistence of mussel beds and help focus future conservation strategies.

 
more » « less
Award ID(s):
1659909
NSF-PAR ID:
10449078
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasiveC.fluminea(hereafterCorbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasiveCorbiculawithin mussel beds. We found thatCorbiculawere more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale,Corbiculadensities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column increased at reaches with more urban land cover. No land cover variables influencedCorbiculapopulations or mussel communities. The strong overlapping distribution ofCorbiculaand mussels support the hypothesis thatCorbiculaare not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. WhetherCorbiculais facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap betweenCorbiculaand native mussels.

     
    more » « less
  2. Wim Uijttewaal, Mário J. (Ed.)
    Freshwater mussels are bivalve mollusks that inhabit the substrates of rivers. Fully three-dimensional large eddy simulations are used to investigate flow, turbulence and the capacity of the flow to dislocate an isolated, partially-buried, isolated freshwater mussel placed in a ful-ly-developed incoming turbulent open channel flow. The mussel is aligned with the flow di-rection, which corresponds to normal conditions in rivers containing mussel beds. Its sub-mergence depth is about 60% of the mussel height. The paper focuses on quantifying the ef-fect of the active filtering flow through the incurring and excurring siphons. Simulation re-sults are discussed for two limiting cases with no active filtering and with a filtering flow dis-charge that is close to the maximum value recorded for the investigated freshwater mussel species. It is shown that the active filtering increases the turbulent kinetic energy in the wake and slightly decreases the mean streamwise drag acting on the mussel shell. The paper also discusses the main types of large-scale coherent structures generated by partially-burrowed mussels aligned with the flow, how they are affected by the filtered flow and the effects of these eddies on the bed shear stress, sediment entrainment/deposition phenomena and nutri-ent transport 
    more » « less
  3. Abstract

    Marine habitat‐forming species often play critical roles on rocky shores by ameliorating stressful conditions for associated organisms. Such ecosystem engineers provide structure and shelter, for example, by creating refuges from thermal and desiccation stresses at low tide. Less explored is the potential for habitat formers to alter interstitial seawater chemistry during their submergence. Here, we quantify the capacity for dense assemblages of the California mussel,Mytilus californianus, to change seawater chemistry (dissolved O2, pH, and total alkalinity) within the interiors of mussel beds at high tide via respiration and calcification. We established a living mussel bed within a laboratory flow tank and measured vertical pH and oxygen gradients within and above the mussel bed over a range of water velocities. We documented decreases of up to 0.1 pH and 25μmol O2kg−1internal to the bed, along with declines of 100μmol kg−1in alkalinity, when external flows were < 0.05 m s−1. Although California mussels often live in habitats subjected to much faster velocities, sizeable populations also inhabit bays and estuaries where such moderate flow speeds can occur > 95% of the time. Reductions in pH and O2inside mussel beds may negatively impact resident organisms and exacerbate parallel human‐induced perturbations to ocean chemistry while potentially selecting for improved tolerance to altered chemistry conditions.

     
    more » « less
  4. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  5. Recent numerical predictions of turbulent boundary layers subject to very strong Favorable Pressure Gradient (FPG) with high spatial/temporal resolution, i.e. Direct Numerical Simulation (DNS), have shown a meaningful weakening of the Reynolds shear stresses with a lengthy logarithmic behavior [1,2]. In the present study, assessment of the Shear Stress Transport and Spalart-Allmaras turbulence models (hence- forth SST and SA, respectively) in Reynolds-averaged Navier-Stokes (RANS) simulations is performed. The main objective is to evaluate the ability of popular turbulence models in capturing the characteristic features present during the quasi-laminarization phenomenon in highly accelerating turbulent boundary layers. A favorable pressure gradient is prescribed by a top converging surface (sink flow) with an approximately constant acceleration parameter of K = 4 . 0 ×10 −6 . Validation of RANS results is carried out by means of a large DNS dataset [1]. Generally speaking, the SA turbulence model has demonstrated the best compromise between accuracy and quick adaptation to the turbulent inflow conditions. Turbulence models properly captured the increasing trend of the freestream and friction velocity in highly accelerated flows; however, they fail to reproduce the decreasing behavior of the skin friction coefficient, which is typical in early stages of the quasi-laminarization process. Both models have shown deficient predictions of the decreasing and logarithmic behavior of Reynolds shear stresses as well as significantly overpredicted the production of Turbulent Kinetic Energy (TKE) in turbulent boundary layers subject to very strong FPG. https://doi.org/10.1016/j.compfluid.2020.104494 
    more » « less