skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific
Although the Pacific Ocean is a major reservoir of heat and CO 2 , and thus an important component of the global climate system, its circulation under different climatic conditions is poorly understood. Here, we present evidence that during the Last Glacial Maximum (LGM), the North Pacific was better ventilated at intermediate depths and had surface waters with lower nutrients, higher salinity, and warmer temperatures compared to today. Modeling shows that this pattern is well explained by enhanced Pacific meridional overturning circulation (PMOC), which brings warm, salty, and nutrient-poor subtropical waters to high latitudes. Enhanced PMOC at the LGM would have lowered atmospheric CO 2 —in part through synergy with the Southern Ocean—and supported an equable regional climate, which may have aided human habitability in Beringia, and migration from Asia to North America.  more » « less
Award ID(s):
1736771 1643445
PAR ID:
10231031
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
50
ISSN:
2375-2548
Page Range / eLocation ID:
eabd1654
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The present-day deep ocean global meridional overturning circulation is dominated by the Atlantic meridional overturning circulation (AMOC), with dense water sinking in the high-latitude North Atlantic Ocean. In contrast, deep-water formation in the subarctic North Pacific is inhibited by a strong upper-ocean halocline, which prevents the development of an analogous Pacific meridional overturning circulation (PMOC). Nevertheless, paleoclimate evidence suggests that a PMOC with deep-water formation in the North Pacific was active, for instance, during the warm Pliocene epoch and possibly during the most recent deglaciation. In the present study, we describe a spontaneous activation of the PMOC in a multimillennial abrupt 4 × CO2experiment using one of the configurations of the Community Earth System Model (CESM1). Soon after the imposed CO2increase, the model’s AMOC collapses and remains in a weakened state for several thousand years. The PMOC emerges after some 2500 years of integration, persists for about 1000 years, reaching nearly 10 Sv (1 Sv ≡ 106m3s−1), but eventually declines to about 5 Sv. The PMOC decline follows the AMOC recovery in the model, consistent with an Atlantic–Pacific interbasin seesaw. The PMOC activation relies on two factors: (i) gradual warming and freshening of the North Pacific deep ocean, which reduces ocean vertical stratification on millennial time scales, and (ii) upper-ocean salinity increase in the subarctic North Pacific over several centuries, followed by a rapid erosion of the pycnocline and activation of deep-water formation. Ultimately, our results provide insights on the characteristics of global ocean overturning in warm climates. 
    more » « less
  2. Abstract Unlike in the high‐latitude North Atlantic, no deep water is formed in the modern subarctic North Pacific. It has previously been suggested that during climate states different from today, this dichotomy did not endure, and the formation of North Pacific Deepwater (NPDW) occurred in the subarctic North Pacific, which supported an active Pacific meridional overturning circulation (PMOC). Here we provide new records of productivity and sedimentary redox conditions from the central subarctic North Pacific spanning the late Miocene to early Pleistocene. These reconstructions indicate greater‐than‐modern and temporally varying North Pacific export production across the interval of ∼2.7–6 Ma. Our time series, combined with previously published data sets and model output for Pliocene North Pacific Ocean dynamics, support the presence of an active PMOC during the Pliocene, and suggest that the characteristics of NPDW formation varied during this warmer interval of Earth's history. This finding of elevated export production at a time of deep water formation presents a conundrum when considering Quaternary North Pacific Ocean dynamics, where subarctic North Pacific productivity declines during intervals when enhanced overturning is posited to occur. We evaluate our data considering the caveats of both (i.e., Pliocene and Quaternary North Pacific circulation) hypotheses, as well as additional mechanisms unrelated to ocean circulation. Because the Pliocene is a possible analogue for near‐future climate, our results and analyses have important ramifications for our understanding of regional and global climate in the coming decades as the planet continues to warm. 
    more » « less
  3. Abstract In contrast to the modern‐day climate, North Pacific deep water formation and a Pacific meridional overturning circulation (PMOC) may have been active during past climate conditions, in particular during the Pliocene epoch (some 3–5 million years ago). Here, we use a climate model simulation with a robust PMOC cell to investigate the pathways of the North Pacific deep water from subduction to upwelling, as revealed by Lagrangian particle trajectories. We find that similar to the present‐day Atlantic Meridional Overturning Circulation (AMOC), most subducted North Pacific deep water upwells in the Southern Ocean. However, roughly 15% upwells in the tropical Indo‐Pacific Oceans instead—a key feature distinguishing the PMOC from the AMOC. The connection to the Indian Ocean is relatively fast, at about 250 years. The connection to the tropical Pacific is slower (∼800 years) as water first travels to the subtropical South Pacific then gradually upwells through the thermocline. 
    more » « less
  4. Abstract The Miocene (∼23–5 Ma) is a past warm epoch when global surface temperatures varied between ∼5 and 8°C warmer than today, and CO2concentration was ∼400–800 ppm. The narrowing/closing of the tropical ocean gateways and widening of high‐latitude gateways throughout the Miocene is likely responsible for the evolution of the ocean's overturning circulation to its modern structure, though the mechanisms remain unclear. Here, we investigate early and middle Miocene ocean circulation in an opportunistic climate model intercomparison (MioMIP1), using 14 simulations with different paleogeography, CO2, and vegetation. The strength of the Southern Ocean‐driven Meridional Overturning Circulation (SOMOC) bottom cell is similar in the Miocene and Pre‐Industrial (PI) but dominates the Miocene global MOC due to weaker Northern Hemisphere overturning. The Miocene Atlantic MOC (AMOC) is weaker than PI in all the simulations (by 2–21 Sv), possibly due to its connection with an Arctic that is considerably fresher than today. Deep overturning in the North Pacific (PMOC) is present in three simulations (∼5–10 Sv), of which two have a weaker AMOC, and one has a stronger AMOC (compared to its PMOC). Surface freshwater fluxes control northern overturning such that the basin with the least freshwater gain has stronger overturning. While the orography, which impacts runoff direction (Pacific vs. Atlantic), has an inconsistent impact on northern overturning across simulations, overall, features associated with the early Miocene—such as a lower Tibetan Plateau, the Rocky Mountains, and a deeper Panama Seaway—seem to favor PMOC over AMOC. 
    more » « less
  5. Abstract The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2levels. We document the enhanced storage of respired CO2during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2in the deep ocean is a ubiquitous feature of late‐Pleistocene ice ages. 
    more » « less