The present-day deep ocean global meridional overturning circulation is dominated by the Atlantic meridional overturning circulation (AMOC), with dense water sinking in the high-latitude North Atlantic Ocean. In contrast, deep-water formation in the subarctic North Pacific is inhibited by a strong upper-ocean halocline, which prevents the development of an analogous Pacific meridional overturning circulation (PMOC). Nevertheless, paleoclimate evidence suggests that a PMOC with deep-water formation in the North Pacific was active, for instance, during the warm Pliocene epoch and possibly during the most recent deglaciation. In the present study, we describe a spontaneous activation of the PMOC in a multimillennial abrupt 4 × CO2experiment using one of the configurations of the Community Earth System Model (CESM1). Soon after the imposed CO2increase, the model’s AMOC collapses and remains in a weakened state for several thousand years. The PMOC emerges after some 2500 years of integration, persists for about 1000 years, reaching nearly 10 Sv (1 Sv ≡ 106m3s−1), but eventually declines to about 5 Sv. The PMOC decline follows the AMOC recovery in the model, consistent with an Atlantic–Pacific interbasin seesaw. The PMOC activation relies on two factors: (i) gradual warming and freshening of the North Pacific deep ocean, which reduces ocean vertical stratification on millennial time scales, and (ii) upper-ocean salinity increase in the subarctic North Pacific over several centuries, followed by a rapid erosion of the pycnocline and activation of deep-water formation. Ultimately, our results provide insights on the characteristics of global ocean overturning in warm climates.
- PAR ID:
- 10231031
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 50
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabd1654
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract In contrast to the modern‐day climate, North Pacific deep water formation and a Pacific meridional overturning circulation (PMOC) may have been active during past climate conditions, in particular during the Pliocene epoch (some 3–5 million years ago). Here, we use a climate model simulation with a robust PMOC cell to investigate the pathways of the North Pacific deep water from subduction to upwelling, as revealed by Lagrangian particle trajectories. We find that similar to the present‐day Atlantic Meridional Overturning Circulation (AMOC), most subducted North Pacific deep water upwells in the Southern Ocean. However, roughly 15% upwells in the tropical Indo‐Pacific Oceans instead—a key feature distinguishing the PMOC from the AMOC. The connection to the Indian Ocean is relatively fast, at about 250 years. The connection to the tropical Pacific is slower (∼800 years) as water first travels to the subtropical South Pacific then gradually upwells through the thermocline.
-
Abstract The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2levels. We document the enhanced storage of respired CO2during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2in the deep ocean is a ubiquitous feature of late‐Pleistocene ice ages.
-
Abstract Upwelling deep waters in the Southern Ocean release biologically sequestered carbon into the atmosphere, contributing to the relatively high atmospheric CO2levels during interglacial climate periods. Paleoceanographic evidence suggests this “CO2leak” was lessened during the last glacial maximum (LGM), potentially due to increased stratification, weaker and equatorward‐shifted winds, and/or enhanced biological carbon export. The collective influences of these mechanisms on the ocean's biological pump efficiency and amount of atmospheric CO2can be quantified by determining preformed phosphate of deep waters. We quantify preformed PO4(Ppre,AOU) and preformed
( ) of LGM bottom waters using a compilation of published paleo‐temperature, nutrient and oxygen estimates from benthic foraminifera. Our results show that preformed phosphate of the Pacific and Indian deep oceans was reduced by about −0.53 ± 0.13 μM and suggest that much (64 ± 28 ppmv) of the Glacial‐Interglacial CO2drawdown resulted from changes in the ocean's biological pump efficiency. Once carbonate compensation is accounted for, this can explain the entire CO2drawdown (87 ± 40 ppmv). Preformed shows similar results. The reconstructed LGM Ppre,AOUand oxygen are qualitatively consistent with the changes produced by a suite of numerical sensitivity experiments that roughly simulate three proposed mechanisms for an increase in LGM biological pump efficiency: an increase in biological activity, a decrease in wind‐driven upwelling, and an increase in stratification in the Southern Ocean. -
Abstract We reconstruct sea surface temperatures (SSTs) at Deep Sea Drilling Project Site 608 (42.836°N, 23.087°), north of the Azores Front, and Ocean Drilling Program Site 982 (57.516°N, 15.866°), under the North Atlantic Current, in order to track Miocene (23.1–5.3 Ma) development of North Atlantic surface waters. Mean annual SSTs from TEX86and UK′37proxy estimates at both sites were 10–15 °C higher than modern through the Miocene Climatic Optimum (17–14.5 Ma). During the global cooling of the Middle Miocene Climate Transition (~14.5–12.5 Ma), SSTs at midlatitude Site 608 cooled by ~6 °C, whereas high‐latitude Site 982 cooled by only ~2 °C, resulting in an ~4 Myr collapse of the SST gradient between the two sites. This regional pattern is inconsistent with an increased latitudinal surface temperature gradient, as generally associated with global cooling episodes linked to decreasing
p CO2levels. Instead, the pattern is best explained by enhanced ocean heat transport into the high‐latitude North Atlantic superimposed on the global cooling trend, probably due to enhanced Atlantic meridional overturning circulation and/or a stronger North Atlantic Current. During global late Miocene cooling (~8–7 Ma), surface waters cooled by ~6 °C at Site 982 while minimal change occurred at Site 608, reestablishing the North Atlantic SST gradient. The collapse and reemergence of the SST gradient between the middle‐ and high‐latitude North Atlantic suggests that interaction between changes in regional ocean circulation and the global response to changes in greenhouse gas concentration was important in Miocene climate evolution.