skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution of the Diels–Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions
Abstract This review article describes the evolution of Woodward's mechanistic thinking, beginning in the late 1930s and early 1940s with his proposal of a charge‐transfer mechanism for the Diels–Alder reaction, eventually leading to the Woodward–Katz two‐stage concerted mechanism in 1959, and then to its mechanistic solution in terms of orbital symmetry control. Houk′s research in the Woodward labs, testing the predictions of this theory, is described. Subsequent modern calculations with quantum mechanics and molecular dynamics simulations have shown that Woodward indeed had perfectly described not only the cyclopentadiene dimerization mechanism, but a new class of transition states now known as ambimodal or bis‐pericyclic transition states. In recent years, the Houk group has found that ambimodal reactions are operative in the [6+4] cycloaddition. Molecular dynamics simulations of many Diels–Alder and ambimodal cycloadditions provide a time‐resolved picture of how these reactions occur. Lastly, Roald Hoffmann provides a Coda in which he describes his joy in “being taken along the journey” of the cycloaddition story from Woodward's youth to today's trajectory simulations.  more » « less
Award ID(s):
1764328
PAR ID:
10231252
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
23
ISSN:
1433-7851
Page Range / eLocation ID:
p. 12660-12681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The reaction of an aryne with an alkyne to generate a benzocyclobutadiene (BCB) intermediate is rare. We report here examples of this reaction, revealed by Diels–Alder trapping of the BCB by either pendant or external electron‐deficient alkynes. Mechanistic delineation of the reaction course is supported by DFT calculations. A three‐component process joining the benzyne first with an electron‐rich and then with an electron‐poor alkyne was uncovered. Reactions in which the BCB functions in a rarely observed role as a 4π diene component in Diels–Alder reactions are reported. The results also shed new light on aspects of the hexadehydro‐Diels–Alder reaction used to generate the benzynes. 
    more » « less
  2. Gaich, T. (Ed.)
    We report the cycloaddition reactions of 1-alkoxy-1- amino-1,3-butadienes. These doubly activated dienes are prepared on a multigram scale from crotonic acid chloride and its derivatives. The dienes undergo Diels−Alder (DA) and hetero-Diels−Alder (HDA) reactions under mild reaction conditions with a variety of electron- deficient dienophiles to afford cycloadducts in good yields with excellent regioselectivities. The hydrolysis of the DA cycloadducts provides 6-substituted and 6,6-disubstituted 2-cylohexenones, which are versatile building blocks for complex molecule synthesis. The corresponding HDA cycloadducts afford 6-substituted 5,6-dihydropyr- an-2-ones. 
    more » « less
  3. Described are the first examples of Lewis acid-promoted Diels–Alder reactions of vinylpyridines and other vinylazaarenes with unactivated dienes. Cyclohexyl-appended azaarenes constitute a class of substructures of rising prominence in drug discovery. Despite this, thermal variants of the vinylazaarene Diels–Alder reaction are rare and have not been adopted for synthesis, and Lewis acid-promoted variants are virtually unexplored. The presented work addresses this gap and in the process furnishes increased scope, dramatically higher yields, improved regioselectivity, and high levels of diastereoselectivity compared to prior thermal examples. These reactions provide scalable access to druglike scaffolds not readily available through other methods. More broadly, these studies establish a useful new class of dienophiles that, based on preliminary mechanistic studies, should be amenable to conventional strategies for enantioselective catalysis. 
    more » « less
  4. Abstract Several charge‐containing TADDOL salts were synthesized and used as organocatalysts in asymmetric Diels–Alder and hetero‐Diels–Alder reactions. Their catalytic activity was found to exceed that of a noncharged analog while maintaining or improving upon the enantioselectivity. The enhanced activities of the TADDOL salts enabled them to act as presumed hydrogen bond donor catalysts in the Diels–Alder and hetero‐Diels–Alder reactions of 1,3‐cyclohexadiene with methyl vinyl ketone at 40°C and 2‐phenoxy‐1,3‐butadiene with ethyl glyoxylate at room temperature, respectively. Given the ionic nature of these charge‐activated catalysts, it also proved possible to recycle and reuse the TADDOL without chromatography or the need for a recrystallization. 
    more » « less
  5. Substituent-dependent reactivity and selectivity in the intramolecular reactions of arynes tethered with an allene are described. With a 1,3-disubstituted allene moiety, an Alder–ene reaction of an allenic C–H bond is preferred over a [2 + 2] cycloaddition, whereas a [2 + 2] cycloaddition of the terminal π-bond of the allene is preferred with a 1,1-disubstituted allene. With a 1,1,3-trisubstituted allene-tethered aryne, an Alder–ene reaction with an allylic C–H bond is preferred over a [2 + 2] cycloaddition. 
    more » « less