skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband Electrical Sensing of a Live Biological Cell with In Situ Single-Connection Calibration
Single-connection in situ calibration using biocompatible solutions is demonstrated in single-cell sensing from 0.5 to 9 GHz. The sensing is based on quickly trapping and releasing a live cell by dielectrophoresis on a coplanar transmission line with a little protrusion in one of its ground electrodes. The same transmission line is used as the calibration standard when covered by various solutions of known permittivities. The results show that the calibration technique may be precise enough to differentiate cells of different nucleus sizes, despite the measured difference being less than 0.01 dB in the deembedded scattering parameters. With better accuracy and throughput, the calibration technique may allow broadband electrical sensing of live cells in a high-throughput cytometer.  more » « less
Award ID(s):
1809623
PAR ID:
10231274
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
14
ISSN:
1424-8220
Page Range / eLocation ID:
3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Live Jurkat cells were trapped by dielectrophoresis on a coplanar waveguide and the resulted changes in its reflection and transmission coefficients were measured from 900 Hz to 40 GHz. The measurement confirms that the decrease of nucleus size in a cell increases its impacts on both the reflection and transmission coefficients. Being fast, compact and label free, broadband electrical sensing may be used to detect other changes of the nucleus morphology and DNA content, which could be useful for cancer diagnosis. 
    more » « less
  2. Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures – plasmonic metasurfaces – as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells. 
    more » « less
  3. Cells mediate interactions with the extracellular environment through a crowded assembly of transmembrane proteins, glycoproteins and glycolipids on their plasma membrane. The extent to which surface crowding modulates the biophysical interactions of ligands, receptors, and other macromolecules is poorly understood due to the lack of methods to quantify surface crowding on native cell membranes. In this work, we demonstrate that physical crowding on reconstituted membranes and live cell surfaces attenuates the effective binding affinity of macromolecules such as IgG antibodies in a surface crowding-dependent manner. We combine experiment and simulation to design a crowding sensor based on this principle that provides a quantitative readout of cell surface crowding. Our measurements reveal that surface crowding decreases IgG antibody binding by 2 to 20 fold in live cells compared to a bare membrane surface. Our sensors show that sialic acid, a negatively charged monosaccharide, contributes disproportionately to red blood cell surface crowding via electrostatic repulsion, despite occupying only ~1% of the total cell membrane by mass. We also observe significant differences in surface crowding for different cell types and find that expression of single oncogenes can both increase and decrease crowding, suggesting that surface crowding may be an indicator of both cell type and state. Our high-throughput, single-cell measurement of cell surface crowding may be combined with functional assays to enable further biophysical dissection of the cell surfaceome. 
    more » « less
  4. Recently, ultra-wideband electrical sensing has been developed as a fast, compact, and label-free technique to characterize a biological cell noninvasively and to extract its intracellular properties. This paper presents, for the first time, the use of the technique to sense the change in the nucleus size of a live Jurkat cell. The experiment is based on trapping and detrapping the cell by dielectrophoresis on a coplanar waveguide and measuring the return and insertion losses due to the presence of the cell from 9 kHz to 9 GHz. The results have been validated by traditional fluorescence microscopy. In the future, by extending the technique to detect changes in nucleus shape and DNA content, it could be used to distinguish cancerous cells from normal cells, for example. 
    more » « less
  5. Human epidermal growth factor receptors (HER)—also known as EGFR or ErbB receptors—are a subfamily of receptor tyrosine kinases (RTKs) that play crucial roles in cell growth, division, and differentiation. HER4 (ErbB4) is the least studied member of this family, partly because its expression is lower in later stages of development. Recent work has suggested that HER4 can play a role in metastasis by regulating cell migration and invasiveness; however, unlike EGFR and HER2, the precise role that HER4 plays in tumorigenesis is still unresolved. Early work on HER family proteins suggested that there are direct interactions between the four members, but to date, there has been no single study of all four receptors in the same cell line with the same biophysical method. Here, we quantitatively measure the degree of association between HER4 and the other HER family proteins in live cells with a time‐resolved fluorescence technique called pulsed interleaved excitation fluorescence cross‐correlation spectroscopy (PIE‐FCCS). PIE‐FCCS is sensitive to the oligomerization state of membrane proteins in live cells, while simultaneously measuring single‐cell protein expression levels and diffusion coefficients. Our PIE‐FCCS results demonstrate that HER4 interacts directly with all HER family members in the cell plasma membrane. The interaction between HER4 and other HER family members intensified in the presence of a HER4‐specific ligand. Our work suggests that HER4 is a preferred dimerization partner for all HER family proteins, even in the absence of ligands. 
    more » « less