skip to main content


Title: Arase Observation of the Source Region of Auroral Arcs and Diffuse Auroras in the Inner Magnetosphere
Abstract

Auroral arcs and diffuse auroras are common phenomena at high latitudes, though characteristics of their source plasma and fields have not been well understood. We report the first observation of fields and particles including their pitch‐angle distributions in the source region of auroral arcs and diffuse auroras, using data from the Arase satellite atL ~ 6.0–6.5. The auroral arcs appeared and expanded both poleward and equatorward at local midnight from ~0308 UT on 11 September 2018 at Nain (magnetic latitude: 66°), Canada, during the expansion phase of a substorm, while diffuse auroras covered the whole sky after 0348 UT. The top part of auroral arcs was characterized by purple/blue emissions. Bidirectional field‐aligned electrons with structured energy‐time spectra were observed in the source region of auroral arcs, while source electrons became isotropic and less structured in the diffuse auroral region afterwards. We suggest that structured bidirectional electrons at energies below a few keV were caused by upward field‐aligned potential differences (upward electric field along geomagnetic field) reaching high altitudes (~30,000 km) above Arase. The bidirectional electrons above a few keV were probably caused by Fermi acceleration associated with the observed field dipolarization. Strong electric‐field fluctuations and earthward Poynting flux were observed at the arc crossing and are probably also caused by the field dipolarization. The ions showed time‐pitch‐angle dispersion caused by mirror reflection. These results indicate a clear contrast between auroral arcs and diffuse auroras in terms of source plasma and fields and generation mechanisms of auroral arcs in the inner magnetosphere.

 
more » « less
Award ID(s):
2013648
NSF-PAR ID:
10378368
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
8
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although many substorm‐related observations have been made, we still have limited insight into propagation of the plasma and field perturbations in Pi2 frequencies (∼7–25 mHz) in association with substorm aurora, particularly from the auroral source region in the inner magnetosphere to the ground. In this study, we present conjugate observations of a substorm brightening aurora using an all‐sky camera and an inner‐magnetospheric satellite Arase atL ∼ 5. A camera at Gakona (62.39°N, 214.78°E), Alaska, observed a substorm auroral brightening on 28 December 2018, and the footprint of the satellite was located just equatorward of the aurora. Around the timing of the auroral brightening, the satellite observed a series of quasi‐periodic variations in the electric and magnetic fields and in the energy flux of electrons and ions. We demonstrate that the diamagnetic variations of thermal pressure and medium‐energy ion energy flux in the inner magnetosphere show approximately one‐to‐one correspondence with the oscillations in luminosity of the substorm brightening aurora and high‐latitudinal Pi2 pulsations on the ground. We also found their anti‐correlation with low‐energy electrons. Cavity‐type Pi2 pulsations were observed at mid‐ and low‐latitudinal stations. Based on these observations, we suggest that a wave phenomenon in the substorm auroral source region, like ballooning type instability, play an important role in the development of substorm and related auroral brightening and high‐latitude Pi2, and that the variation of the auroral luminosity was directly driven by keV electrons which were modulated by Alfven waves in the inner magnetosphere.

     
    more » « less
  2. Abstract

    We present a case study of the field‐aligned current (FAC) systems that transpire within the high‐altitude auroral acceleration region of an “auroral bead” initiated double oval substorm observed on 23 February 2001 by the Cluster fleet. Conjunctive Cluster measurements and auroral images from IMAGE reveal that auroral bead current system formation and evolution is a multi‐scale, injection‐mediated process. The FACs at large scales vary on substorm evolution time scales (∼minutes) in response to the injection and evolution of hotter denser magnetospheric plasma. Embedded within the large‐scale FACs are intense short‐scale (≲ few 10s of km) currents comprising dispersive scale Alfvén wave (DAW) fluctuations. The DAWs are a complex mixture of ingoing and reflected components that regularly interfere to form a broad spectrum of kinetic (dispersive) scale Alfvénic field‐line resonances (KFLRs). The Alfvénic currents appear as a nested series of upward and downward FAC densities with amplitudes reaching a few 100 nA/m2. Energized field‐aligned or counterstreaming electrons near keV energies and below are observed with parallel skews that vary in concert with variations in the DAW current sense. Positive correlations between DAW electric field energy densities and the energies of energized H+, He+, and O+outflow are observed, indicative of ion energization within the DAW fields. Due to their L‐shell location (L∼5.8–7.0) and associations with injections, the KFLRs are interpreted as the high‐altitude auroral zone analog of KFLRs observed in the equatorial inner magnetosphere.

     
    more » « less
  3. Abstract

    South Pole Station, Antarctica (SPA, magnetic latitude = −74.5°, magnetic local time (MLT) = UT–3.5 h), is a unique observatory which can capture daytime auroral forms throughout austral winter season. We have studied the properties and origin of ultralow‐frequency (ULF) range modulation of daytime diffuse aurora, using data acquired on June 23, 2017 by multi‐instrument measurements at SPA and in situ measurements in the dayside outer magnetosphere. At 1500–1600 UT, monochromatic Pc5‐range pulsations (period ∼10 min) emerged in the midday diffuse auroral region. The sequential 2‐D images reveal that the auroral pulsations result from the repetitive formation of faint, diffuse auroral patches, propagating poleward at a speed of ∼1.5 km s−1. Interestingly, no obviously similar magnetic pulsations were found at SPA. The results differ fundamentally from the ground optical and magnetic signatures expected for a standing field line resonance. On the other hand, the co‐located riometer and VLF receiver observed clearly synchronized pulsations, suggesting that tens‐of‐keV electrons interact with modulated chorus waves and then are scattered down to the auroral pulsation region. During the same interval, the THEMIS‐D spacecraft detected corresponding Pc5 oscillations in the dayside outer magnetosphere (9–10REand ∼15 MLT). The compressional component of the magnetospheric Pc5 waves, presumably driven by an external source, exhibited a good correspondence to the daytime Pc5 auroral pulsations. The simultaneous SPA–THEMIS observations highlight the role of compressional Pc5 pulsations in the dayside outer magnetosphere in determining the periodicity of daytime high‐latitude diffuse auroral pulsations.

     
    more » « less
  4. null (Ed.)
    Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective. 
    more » « less
  5. Abstract

    The role of diffuse electron precipitation in the formation of subauroral polarization streams (SAPS) is investigated with the Multiscale Atmosphere‐Geospace Environment (MAGE) model. Diffuse precipitation is derived from the distribution of drifting electrons. SAPS manifest themselves as a separate mesoscale flow channel in the duskside ionosphere, which gradually merges with the primary auroral convection toward dayside as the equatorward auroral boundary approaches the poleward Region‐2 field‐aligned currents (FACs) boundary. SAPS expand to lower latitudes and toward the nightside during the main phase of a geomagnetic storm, associated with magnetotail earthward plasma flows building up the ring current and intensifying Region‐2 FACs and electron precipitation. SAPS shrink poleward and sunward as the interplanetary magnetic field turns northward. When diffuse precipitation is turned off in a controlled MAGE simulation, ring current and duskside Region‐2 FACs become weaker, but subauroral zonal ion drifts are still comparable to auroral convection. However, subauroral and auroral convection manifest as a single broad flow channel without showing any mesoscale structure. SAPS overlap with the downward Region‐2 FACs equatorward of diffuse precipitation, where poleward electric fields are strong due to a low conductance in the subauroral ionosphere. The Region‐2 FACs extend to latitudes lower than the diffuse precipitation because the ring current protons penetrate closer to the Earth than the electrons do. This study reproduces the key physics of SAPS formation and their evolution in the coupled magnetosphere‐ionosphere during a geomagnetic storm. Diffuse electron precipitation is demonstrated to play a critical role in determining SAPS location and structure.

     
    more » « less