skip to main content


Title: A Dinuclear Persulfide‐Bridged Ruthenium Compound is a Hypoxia‐Selective Hydrogen Sulfide (H 2 S) Donor
Abstract

Hydrogen sulfide (H2S) is a gaseous molecule that has received attention for its role in biological processes and therapeutic potential in diseases, such as ischemic reperfusion injury. Despite its clinical relevance, delivery of H2S to biological systems is hampered by its toxicity at high concentrations. Herein, we report the first metal‐based H2S donor that delivers this gas selectively to hypoxic cells. We further show that H2S release from this compound protects H9c2 rat cardiomyoblasts from an in vitro model of ischemic reperfusion injury. These results validate the utility of redox‐activated metal complexes as hypoxia‐selective H2S‐releasing agents for use as tools to study the role of this gaseous molecule in complex biological systems.

 
more » « less
Award ID(s):
1750295
NSF-PAR ID:
10231342
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
3
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1588-1592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogen sulfide (H2S) is a gaseous molecule that has received attention for its role in biological processes and therapeutic potential in diseases, such as ischemic reperfusion injury. Despite its clinical relevance, delivery of H2S to biological systems is hampered by its toxicity at high concentrations. Herein, we report the first metal‐based H2S donor that delivers this gas selectively to hypoxic cells. We further show that H2S release from this compound protects H9c2 rat cardiomyoblasts from an in vitro model of ischemic reperfusion injury. These results validate the utility of redox‐activated metal complexes as hypoxia‐selective H2S‐releasing agents for use as tools to study the role of this gaseous molecule in complex biological systems.

     
    more » « less
  2. Hydrogen sulfide (H 2 S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H 2 S is hindered by its corrosive and toxic nature. In addition, small molecule H 2 S donors often generate other reactive and sulfur-containing species upon H 2 S release, leading to unwanted side effects. Here, we demonstrate that H 2 S release from biocompatible porous solids, namely metal–organic frameworks (MOFs), is a promising alternative strategy for H 2 S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H 2 S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H 2 S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H 2 S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H 2 S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H 2 S. Overall, our findings suggest that H 2 S-loaded MOFs represent a new family of easily-handled solid sources of H 2 S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery. 
    more » « less
  3. Abstract

    Hydrogen sulfide (H2S) is a gaseous inflammatory mediator and important signaling molecule for maintaining gastrointestinal (GI) homeostasis. Excess intraluminal H2S in the GI tract has been implicated in inflammatory bowel disease and neurodegenerative disorders; however, the role of H2S in disease pathogenesis and progression is unclear. Herein, an electrochemical gas‐sensing ingestible capsule is developed to enable real‐time, wireless amperometric measurement of H2S in GI conditions. A gold (Au) three‐electrode sensor is modified with a Nafion solid‐polymer electrolyte (Nafion‐Au) to enhance selectivity toward H2S in humid environments. The Nafion‐Au sensor‐integrated capsule shows a linear current response in H2S concentration ranging from 0.21 to 4.5 ppm (R2= 0.954) with a normalized sensitivity of 12.4% ppm−1when evaluated in a benchtop setting. The sensor proves highly selective toward H2S in the presence of known interferent gases, such as hydrogen (H2), with a selectivity ratio of H2S:H2= 1340, as well as toward methane (CH4) and carbon dioxide (CO2). The packaged capsule demonstrates reliable wireless communication through abdominal tissue analogues, comparable to GI dielectric properties. Also, an assessment of sensor drift and threshold‐based notification is investigated, showing potential for in vivo application. Thus, the developed H2S capsule platform provides an analytical tool to uncover the complex biology‐modulating effects of intraluminal H2S.

     
    more » « less
  4. Abstract

    Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half‐life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel‐based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter‐releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.

     
    more » « less
  5. Abstract

    Cardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post‐heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post‐ischemic recovery. A platelet‐inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)‐modified platelet membrane and cardiac stromal cell‐secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct‐homing ability of platelet membrane and the overexpression of PGE2receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.

     
    more » « less