We consider evacuation of a group of n ≥ 2 autonomous mobile agents (or robots) from an unknown exit on an infinite line. The agents are initially placed at the origin of the line and can move with any speed up to the maximum speed 1 in any direction they wish and they all can communicate when they are co-located. However, the agents have different wireless communication abilities: while some are fully wireless and can send and receive messages at any distance, a subset of the agents are senders, they can only transmit messages wirelessly, and the rest are receivers, they can only receive messages wirelessly. The agents start at the same time and their communication abilities are known to each other from the start. Starting at the origin of the line, the goal of the agents is to collectively find a target/exit at an unknown location on the line while minimizing the evacuation time, defined as the time when the last agent reaches the target. We investigate the impact of such a mixed communication model on evacuation time on an infinite line for a group of cooperating agents. In particular, we provide evacuation algorithms and analyze the resulting competitive ratio (CR) of the evacuation time for such a group of agents. If the group has two agents of two different types, we give an optimal evacuation algorithm with competitive ratio CR = 3+2√2. If there is a single sender or fully wireless agent, and multiple receivers we prove that CR ∈ [2+√5,5], and if there are multiple senders and a single receiver or fully wireless agent, we show that CR ∈ [3,5.681319]. Any group consisting of only senders or only receivers requires competitive ratio 9, and any other combination of agents has competitive ratio 3.
more »
« less
Search on a Line by Byzantine Robots
We consider the problem of fault-tolerant parallel search on an infinite line by n robots. Starting from the origin, the robots are required to find a target at an unknown location. The robots can move with maximum speed 1 and can communicate wirelessly among themselves. However, among the n robots, there are f robots that exhibit byzantine faults. A faulty robot can fail to report the target even after reaching it, or it can make malicious claims about having found the target when in fact it has not. Given the presence of such faulty robots, the search for the target can only be concluded when the non-faulty robots have sufficient evidence that the target has been found. We aim to design algorithms that minimize the value of S_d(n, f), the time to find a target at a (unknown) distance d from the origin by n robots among which f are faulty. We give several different algorithms whose running time depends on the ratio f/n, the density of faulty robots, and also prove lower bounds. Our algorithms are optimal for some densities of faulty robots.
more »
« less
- Award ID(s):
- 1813940
- PAR ID:
- 10231398
- Date Published:
- Journal Name:
- International Journal of Foundations of Computer Science
- ISSN:
- 0129-0541
- Page Range / eLocation ID:
- 1 to 19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robotic search often involves teleoperating vehicles into unknown environments. In such scenarios, prior knowledge of target location or environmental map may be a viable resource to tap into and control other autonomous robots in the vicinity towards an improved search performance. In this paper, we test the hypothesis that despite having the same skill, prior knowledge of target or environment affects teleoperator actions, and such knowledge can therefore be inferred through robot movement. To investigate whether prior knowledge can improve human-robot team performance, we next evaluate an adaptive mutual-information blending strategy that admits a time-dependent weighting for steering autonomous robots. Human-subject experiments show that several features including distance travelled by the teleoperated robot, time spent staying still, speed, and turn rate, all depend on the level of prior knowledge and that absence of prior knowledge increased workload. Building on these results, we identified distance travelled and time spent staying still as movement cues that can be used to robustly infer prior knowledge. Simulations where an autonomous robot accompanied a human teleoperated robot revealed that whereas time to find the target was similar across all information-based search strategies, adaptive strategies that acted on movement cues found the target sooner more often than a single human teleoperator compared to non-adaptive strategies. This gain is diluted with number of robots, likely due to the limited size of the search environment. Results from this work set the stage for developing knowledge-aware control algorithms for autonomous robots in collaborative human-robot teams.more » « less
-
Presented at the Workshop on Heterogeneous Multi-Robot Task Allocation and Coordination. The authors recently developed a distributed algorithm to enable a team of homogeneous robots to search for and track an unknown and time-varying number of dynamic targets. This algorithm combined a distributed version of the PHD filter (for multi-target tracking) with Lloyd’s algorithm to drive the motion of the robots. In this paper we extend this previous work to allow a heterogeneous team of groundand aerial robots to perform the search and tracking tasks in a coordinated manner. Both types of robots are equipped with sensors that have a finite field of view and which may receive both false positive and false negative detections. Theaerial robots may vary the size of their sensor field of view (FoV) by changing elevation. This increase in the FoV coincides with a decrease in the accuracy and reliability of the sensor. The ground robots maintain the target tracking information while the aerial robots provide additional sensor coverage. We develop two new distributed algorithms to provide filter updates and to make control decisions in this heterogeneous team. Both algorithms only require robots to communicate with nearby robots and use minimal bandwidth.We demonstrate the efficacy of our approach through a series of simulated experiments which show that the heterogeneous teams are able to achieve more accurate tracking in less time than our previous work.more » « less
-
Bessani, Alysson; Défago, Xavier; Nakamura, Junya; Wada, Koichi; Yamauchi, Yukiko (Ed.)This paper studies the design of Byzantine consensus algorithms in an asynchronous single-hop network equipped with the "abstract MAC layer" [DISC09], which captures core properties of modern wireless MAC protocols. Newport [PODC14], Newport and Robinson [DISC18], and Tseng and Zhang [PODC22] study crash-tolerant consensus in the model. In our setting, a Byzantine faulty node may behave arbitrarily, but it cannot break the guarantees provided by the underlying abstract MAC layer. To our knowledge, we are the first to study Byzantine faults in this model. We harness the power of the abstract MAC layer to develop a Byzantine approximate consensus algorithm and a Byzantine randomized binary consensus algorithm. Both of our algorithms require only the knowledge of the upper bound on the number of faulty nodes f, and do not require the knowledge of the number of nodes n. This demonstrates the "power" of the abstract MAC layer, as consensus algorithms in traditional message-passing models require the knowledge of both n and f. Additionally, we show that it is necessary to know f in order to reach consensus. Hence, from this perspective, our algorithms require the minimal knowledge. The lack of knowledge of n brings the challenge of identifying a quorum explicitly, which is a common technique in traditional message-passing algorithms. A key technical novelty of our algorithms is to identify "implicit quorums" which have the necessary information for reaching consensus. The quorums are implicit because nodes do not know the identity of the quorums - such notion is only used in the analysis.more » « less
-
Accurately detecting, localizing, and tracking an unknown and time-varying number of dynamic targets using a team of mobile robots is a challenging problem that requires robots to reason about the uncertainties in their collected measurements. The problem is made more challenging when robots are uncertain about their own states, as this makes it difficult to both collectively localize targets and avoid collisions with one another. In this paper, we introduce the convex uncertain Voronoi (CUV) diagram, a generalization of the standard Voronoi diagram that accounts for the uncertain pose of each individual robot. We then use the CUV diagram to develop distributed multi-target tracking and coverage control algorithms that enable teams of mobile robots to account for bounded uncertainty in the location of each robot. Our algorithms are capable of safely driving mobile robots towards areas of high information distribution while maintaining coverage of the whole area of interest. We demonstrate the efficacy of these algorithms via a series of simulated and hardware tests, and compare the results to our previous work which assumes perfect localization.more » « less
An official website of the United States government

