skip to main content


Title: Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO 2 reduction catalysts
To facilitate computational investigation of intermolecular interactions in the solution phase, we report the development of ALMO-EDA(solv), a scheme that allows the application of continuum solvent models within the framework of energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs). In this scheme, all the quantum mechanical states involved in the variational EDA procedure are computed with the presence of solvent environment so that solvation effects are incorporated in the evaluation of all its energy components. After validation on several model complexes, we employ ALMO-EDA(solv) to investigate substituent effects on two classes of complexes that are related to molecular CO 2 reduction catalysis. For [FeTPP(CO 2 -κC)] 2− (TPP = tetraphenylporphyrin), we reveal that two ortho substituents which yield most favorable CO 2 binding, –N(CH 3 ) 3 + (TMA) and –OH, stabilize the complex via through-structure and through-space mechanisms, respectively. The coulombic interaction between the positively charged TMA group and activated CO 2 is found to be largely attenuated by the polar solvent. Furthermore, we also provide computational support for the design strategy of utilizing bulky, flexible ligands to stabilize activated CO 2 via long-range Coulomb interactions, which creates biomimetic solvent-inaccessible “pockets” in that electrostatics is unscreened. For the reactant and product complexes associated with the electron transfer from the p -terphenyl radical anion to CO 2 , we demonstrate that the double terminal substitution of p -terphenyl by electron-withdrawing groups considerably strengthens the binding in the product state while moderately weakens that in the reactant state, which are both dominated by the substituent tuning of the electrostatics component. These applications illustrate that this new extension of ALMO-EDA provides a valuable means to unravel the nature of intermolecular interactions and quantify their impacts on chemical reactivity in solution.  more » « less
Award ID(s):
1955643
NSF-PAR ID:
10231409
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
4
ISSN:
2041-6520
Page Range / eLocation ID:
1398 to 1414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N 2 , and BF bound to a [Ru(II)(NH 3 ) 5 ] 2 + moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential. 
    more » « less
  2. Intermolecular interactions between radicals and closed-shell molecules are ubiquitous in chemical processes, ranging from the benchtop to the atmosphere and extraterrestrial space. While energy decomposition analysis (EDA) schemes for closed-shell molecules can be generalized for studying radical–molecule interactions, they face challenges arising from the unique characteristics of the electronic structure of open-shell species. In this work, we introduce additional steps that are necessary for the proper treatment of radical–molecule interactions to our previously developed unrestricted Absolutely Localized Molecular Orbital (uALMO)-EDA based on density functional theory calculations. A “polarize-then-depolarize” (PtD) scheme is used to remove arbitrariness in the definition of the frozen wavefunction, rendering the ALMO-EDA results independent of the orientation of the unpaired electron obtained from isolated fragment calculations. The contribution of radical rehybridization to polarization energies is evaluated. It is also valuable to monitor the wavefunction stability of each intermediate state, as well as their associated spin density profiles, to ensure the EDA results correspond to a desired electronic state. These radical extensions are incorporated into the “vertical” and “adiabatic” variants of uALMO-EDA for studies of energy changes and property shifts upon complexation. The EDA is validated on two model complexes, H 2 O⋯˙F and FH⋯˙OH. It is then applied to several chemically interesting radical–molecule complexes, including the sandwiched and T-shaped benzene dimer radical cation, complexes of pyridine with benzene and naphthalene radical cations, binary and ternary complexes of the hydroxyl radical with water (˙OH(H 2 O) and ˙OH(H 2 O) 2 ), and the pre-reactive complexes and transition states in the ˙OH + HCHO and ˙OH + CH 3 CHO reactions. These examples suggest that this second generation uALMO-EDA is a useful tool for furthering one's understanding of both energetic and property changes associated with radical–molecule interactions. 
    more » « less
  3. As known, small HCl–water nanoclusters display a particular dissociation behaviour, whereby at least four water molecules are required for the ionic dissociation of HCl. In this work, we examine how intermolecular interactions promote the ionic dissociation of such nanoclusters. To this end, a set of 45 HCl–water nanoclusters with up to four water molecules is introduced. Energy decomposition analysis based on absolutely localized molecular orbitals (ALMO-EDA) is employed in order to study the importance of frozen interaction, dispersion, polarization, and charge-transfer for the dissociation. The vertical ALMO-EDA scheme is applied to HCl–water clusters along a proton-transfer coordinate varying the amount of spectator water molecules. The corresponding ALMO-EDA results show a clear preference for the dissociated cluster only in the presence of four water molecules. Our analysis of adiabatic ALMO-EDA results reveals a push–pull mechanism for the destabilization of the HCl bond based on the synergy between forward and backward charge-transfer. 
    more » « less
  4. Abstract

    A catalyst‐ and additive‐free decarbonylative trifluoromethylthiolation of aldehyde feedstocks has been developed. This operationally simple, scalable, and open‐to‐air transformation is driven by the selective photoexcitation of electron donor‐acceptor (EDA) complexes, stemming from the association of 1,4‐dihydropyridines (donor) withN‐(trifluoromethylthio)phthalimide (acceptor), to trigger intermolecular single‐electron transfer events under ambient‐ and visible light‐promoted conditions. Extension to other electron acceptors enables the synthesis of thiocyanates and thioesters, as well as the difunctionalization of [1.1.1]propellane. The mechanistic intricacies of this photochemical paradigm are elucidated through a combination of experimental efforts and high‐level quantum mechanical calculations [dispersion‐corrected (U)DFT, DLPNO‐CCSD(T), and TD‐DFT]. This comprehensive study highlights the necessity for EDA complexation for efficient alkyl radical generation. Computation of subsequent ground state pathways reveals that SH2 addition of the alkyl radical to the intermediate radical EDA complex is extremely exergonic and results in a charge transfer event from the dihydropyridine donor to theN‐(trifluoromethylthio)phthalimide acceptor of the EDA complex. Experimental and computational results further suggest that product formation also occursviaSH2 reaction of alkyl radicals with 1,2‐bis(trifluoromethyl)disulfane, generated in‐situ through combination of thiyl radicals.

    magnified image

     
    more » « less
  5. Cyclopentadienyl (Cp), a classic ancillary ligand platform, can be chemically noninnocent in electrocatalytic H−H bond formation reactions via protonation of coordinated η5-Cp ligands to form η4-CpH moieties. However, the kinetics of η5-Cp ring protonation, ligand-to-metal (or metal-to-ligand) proton transfer, and the influence of solvent during H2 production electrocatalysis remain poorly understood. We report in-depth kinetic details for electrocatalytic H2 production with Fe complexes containing amine-functionalized CpN3 ligands that are protonated via exogenous acid to generate via η4-CpN3H intermediates (CpN3 = 6-amino-1,4-dimethyl-5,7-diphenyl-2,3,4,6-tetrahydrocyclopenta[b]pyrazin-6-yl). Under reducing conditions, state-of-the-art DFT calculations reveal that a coordinated solvent plays a crucial role in mediating stereo- and regioselective proton transfer to generate (endo-CpN3H)Fe(CO)2(NCMe), with other protonation pathways being kinetically insurmountable. To demonstrate regioselective endo-CpN3H formation, the isoelectronic model complex (endo-CpN3H)Fe(CO)3 is independently prepared, and kinetic studies with the on-cycle hydride intermediate CpN3FeH(CO)2 under CO cleanly furnish the ring-activated complex (endo-CpN3H)Fe(CO)3 via metal-to-ligand proton migration. The on-cycle complex CpN3FeH(CO)2 reacts with acid to release H2 and regenerate [CpN3Fe(CO)2(NCMe)]+, which was found to be the TOF-determining step via DFT. Collectively, these experimental and computational results underscore the emerging importance of Cp ring activation, inner-sphere solvation, and metal−ligand cooperativity to perform proton-coupled electron transfer catalysis for chemical fuel synthesis. 
    more » « less