skip to main content

Title: Chemical vapor transport synthesis, characterization and compositional tuning of ZrSxSe2−x for optoelectronic applications
ZrS2, ZrSe2 and mixed alloy ZrSxSe2−x materials were achieved through chemical vapor transport. The incongruent melting system of Zr-S-Se formed crystalline layered flakes as a transport product that grew up to 2 cm in lateral size with cm-scale flakes consistently obtained for the entire compositional range exhibiting visible hexagonal features. Bulk flakes of the series ZrSxSe2−x (x=0, 0.15, 0.3, 0.6, 1.05, 1.14, 1.51, 1.8 and 2) were analyzed through Raman spectroscopy revealing significant convolution of primary bonding modes and shifting of Raman features as a function of increasing sulfur composition. Additionally, activation of new modes not present in the pure compounds are observed as effects which result from disorder introduced into the crystal due to the random mixing of S-Se in the alloying process. Further structural characterization was performed via x-ray diffraction (XRD) on the layered flakes to evaluate the progression of layer spacing function of alloy composition which was found to range between 6.24 Å for ZrSe2 and 5.85 Å for ZrS2. Estimation of the compositional ratios of the alloy flakes through energy dispersive spectroscopy (EDS) large-area mapping verified the relation of the targeted source stoichiometry represented in the layered flakes. Atomic-resolution high angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM) imaging was performed on the representative Zr (S0.5Se0.5)2 alloy to more » validate the 1T atomic structure and observe the arrangement of the chalcogenide columns stacks. Additionally, selected area diffraction pattern generated from the [0 0 0 1] zone axis revealed the in-plane lattice parameter to be approximately 3.715 Å. « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of crystal growth
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transition metal doping affects the OER catalytic activity in alkaline medium. Energy dispersive spectroscopy (EDS) was performed to detect the elemental compositions and confirm the feasibility of compositional control of 66 metal selenide thin films. It was observed that the OER catalytic activity is sensitive to the concentration of Cu in the catalysts, and the catalyst activity tended to increase with increasing Cu concentration. However, increasing the Cu concentration beyond a certain limit led to decrease in catalytic efficiency, and copper selenide by itself, although catalytically active, showed higher onset potential and overpotential for OER compared to the ternary and quaternarymore »mixed metal selenides. Interestingly, the best quaternary composition (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 showed similar crystal structure as its parent compound of Cu 3 Se 2 with slight decrease in lattice spacings of (101) and (210) lattice planes (0.0222 Å and 0.0148 Å, respectively) evident from the powder X-ray diffraction pattern. (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 thin film exhibited excellent OER catalytic activity and required an overpotential of 272 mV to reach a current density of 10 mA cm −2 , which is 54 mV lower than Cu 3 Se 2 , indicating a synergistic effect of transition metal doping in enhancing catalytic activity.« less
  2. Abstract

    Large area highly crystalline MoS2and WS2thin films were successfully grown on different substrates using radio-frequency magnetron sputtering technique. Structural, morphological and thermoelectric transport properties of MoS2,and WS2thin films have been investigated systematically to fabricate high-efficient thermal energy harvesting devices. X-ray diffraction data revealed that crystallites of MoS2and WS2films are highly oriented in 002 plane with uniform grain size distribution confirmed through atomic force microscopy study. Surface roughness increases with substrate temperature and it plays a big role in electron and phonon scattering. Interestingly, MoS2films also display low thermal conductivity at room temperature and strongly favors achievement of higher thermoelectric figure of merit value of up to 1.98. Raman spectroscopy data shows two distinct MoS2vibrational modes at 380 cm−1for E12gand 410 cm−1for A1g. Thermoelectric transport studies further demonstrated that MoS2films show p-type thermoelectric characteristics, while WS2is an n-type material. We demonstrated high efficient pn-junction thermoelectric generator device for waste heat recovery and cooling applications.

  3. The crystal chemistry of carnotite (prototype formula: K2(UO2)2(VO4)2·3H2O) occurring in mine wastes collected from Northeastern Arizona was investigated by integrating spectroscopy, electron microscopy, and x-ray diffraction analyses. Raman spectroscopy confirms that the uranyl vanadate phase present in the mine waste is carnotite, rather than the rarer polymorph vandermeerscheite. X-ray diffraction patterns of the carnotite occurring in these mine wastes are in agreement with those reported in the literature for a synthetic analog. Carbon detected in this carnotite was identified as organic carbon inclusions using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses. After excluding C and correcting for K-drift from the electron microprobe analyses, the composition of the carnotite was determined as 8.64% K2O, 0.26% CaO, 61.43% UO3, 20.26% V2O5, 0.38% Fe2O3, and 8.23% H2O. The empirical formula, (K1.66Ca0.043Al(OH)2+0.145 Fe(OH)2+0.044)((U0.97)O2)2((V1.005)O4)2·4H2O of the studied carnotite, with an atomic ratio 1.9:2:2 for K:U:V, is similar to the that of carnotite (K2(UO2)2(VO4)2·3H2O) reported in the literature. Lattice spacing data determined using selected area electron diffraction (SAED)-TEM suggests: (1) complete amorphization of the carnotite within 120 s of exposure to the electron beam and (2) good agreement of the measured d-spacings for carnotite in the literature. Small differences between the measuredmore »and literature d-spacing values are likely due to the varying degree of hydration between natural and synthetic materials. Such information about the crystal chemistry of carnotite in mine wastes is important for an improved understanding of the occurrence and reactivity of U, V, and other elements in the environment.« less
  4. Potassium is used extensively as a promoter with iron catalysts in Fisher–Tropsch synthesis, water–gas shift reactions, steam reforming, and alcohol synthesis. In this paper, the identification of potassium chemical states on the surface of iron catalysts is studied to improve our understanding of the catalytic system. Herein, potassium-doped iron oxide (α-Fe2O3) nanomaterials are synthesized under variable calcination temperatures (400–800 °C) using an incipient wetness impregnation method. The synthesis also varies the content of potassium nitrate deposited on superfine iron oxide with a diameter of 3 nm (Nanocat®) to reach atomic ratios of 100 Fe:x K (x = 0–5). The structure, composition, and properties of the synthesized materials are investigated by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, Raman spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and X-ray photoelectron spectroscopy, as well as transmission electron microscopy, with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The hematite phase of iron oxide retains its structure up to 700 °C without forming any new mixed phase. For compositions as high as 100 Fe:5 K, potassium nitrate remains stable up to 400 °C, but at 500 °C, it starts to decompose into nitrites and, at only 800 °C, it completely decomposes to potassiummore »oxide (K2O) and a mixed phase, K2Fe22O34. The doping of potassium nitrate on the surface of α-Fe2O3 provides a new material with potential applications in Fisher–Tropsch catalysis, photocatalysis, and photoelectrochemical processes.« less
  5. Black phosphorus (b-P) is an allotrope of phosphorus whose properties have attracted great attention. In contrast to other 2D compounds, or pristine b-P, the properties of b-P alloys have yet to be explored. In this report, we present a detailed study on the Raman spectra and on the temperature dependence of the electrical transport properties of As-doped black phosphorus (b-AsP) for an As fraction x = 0.25. The observed complex Raman spectra were interpreted with the support of Density Functional Theory (DFT) calculations since each original mode splits in three due to P-P, P-As, and As-As bonds. Field-effect transistors (FET) fabricated from few-layered b-AsP exfoliated onto Si/SiO 2 substrates exhibit hole-doped like conduction with a room temperature ON/OFF current ratio of ~10 3 and an intrinsic field-effect mobility approaching ~300 cm 2 /Vs at 300 K which increases up to 600 cm 2 /Vs at 100 K when measured via a 4-terminal method. Remarkably, these values are comparable to, or higher, than those initially reported for pristine b-P, indicating that this level of As doping is not detrimental to its transport properties. The ON to OFF current ratio is observed to increase up to 10 5 at 4 K. Atmore »high gate voltages b-AsP displays metallic behavior with the resistivity decreasing with decreasing temperature and saturating below T ∼ 100 K, indicating a gate-induced insulator to metal transition. Similarly to pristine b-P, its transport properties reveal a high anisotropy between armchair (AC) and zig-zag (ZZ) directions. Electronic band structure computed through periodic dispersion-corrected hybrid Density Functional Theory (DFT) indicate close proximity between the Fermi level and the top of the valence band(s) thus explaining its hole doped character. Our study shows that b-AsP has potential for optoelectronics applications that benefit from its anisotropic character and the ability to tune its band gap as a function of the number of layers and As content.« less