skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing Forearc Migration Geodynamics by Inverting River Long Profiles: the Case Study of the Calabrian Forearc (Central Mediterranean)
Interactions between deep Earth geodynamics and Earth surface processes are well documented at various scales, but many challenges remain in how inversion of a fluvially incised landscape should be interpreted in terms of long-term geodynamics or how deep Earth dynamics impact natural hazards. Here, we present results from geomorphic stream channel metrics and modeling of long profiles of streams draining the Tyrrhenian (northern) flank of Sicily (Italy), to assess the inferred, rapid, west-to-east horizontal translation of the Calabrian forearc. A detachment-limited stream power model-based determination of landscape response time and knickpoint migration provides an independent prediction for transient base level fall associated with the sweeping forearc over the past ~4 Ma. The model shows that two pulses of time-transgressive, west-to-east propagating base level fall occurred in the drainages of northern Sicily, where parallel north-flowing streams are arranged across the migrating path of the forearc. The long profile analysis indicates that the paired uplift pulses last ~1 Ma and are separated in time by ~1.5 Ma, consistent with the west-to-east passage first of the forearc high, followed by dynamic uplift in its wake due to sub-lithospheric mantle flow, as proposed in other plate boundary settings. The ongoing surficial response to these dynamics is represented by river incision, knickpoint migration, and drainage divide migration. Furthermore, these processes steepened the landscape, leading to an increase in active landsliding and contributing to the natural hazards in this region.  more » « less
Award ID(s):
1904262
PAR ID:
10231576
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AGU Fall Meeting
Page Range / eLocation ID:
EP031-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The landscape hidden beneath the Greenland Ice Sheet remains one of the most sparsely mapped regions on Earth, but offers a unique record of environmental conditions prior to and during widespread glaciation, and of the ice sheet's response to changing climates. In particular, subglacial valleys observed across Greenland may preserve geomorphological information pertaining to landscape and ice sheet evolution. Here we analyze the morphology of a subglacial valley network in northern Greenland using bed elevation measurements acquired during multi‐year airborne radio‐echo sounding surveys. Channel profile morphologies are consistent with a primarily fluvial origin of the network, with evidence for localized modification by ice and/or meltwater. Gravity and magnetic anomalies suggest that the spatial organisation of the valley network is influenced by regional‐scale geological structure, implying a long‐lived and well‐established hydrological system. We also document two knickzones in the valley longitudinal profile and terraces above the channel floor in the lower course of the network. These observations, combined with stream power modeling, indicate that northern Greenland experienced two episodes of relative base level fall during the Neogene (∼150 m at ca. 12–3.7 Ma and ∼380 m at ca. 8.2–2.8 Ma) that resulted in channel profile adjustment via incision and knickzone retreat. The timing of the inferred base level fall correlates with other onshore and offshore records of uplift, denudation, and/or relative sea level change, and we suggest that tectonic and/or mantle‐driven uplift played an important role in the genesis of the modern landscape of northern Greenland. 
    more » « less
  2. Evidence from landscape evolution may provide critical constraints for past geodynamic processes, but has been limited by the large uncertainties of topographic reconstructions. Here we present continuous 30-million-year rock uplift histories for three catchments in the Calabrian forearc of southern Italy, using a data-driven inversion of tectonic geomorphology measurements. We find that rock uplift rates were high (>1 mm yr−1) from about 30 to 25 million years ago (Ma) and progressively declined to <0.4 mm yr−1 by ~15 Ma, then remained low before abruptly increasing around 1.5–1.0 Ma. These uplift rates do not match the forearc’s subduction velocity record, implying that uplift was not dominated by crustal thickening due to subduction-driven sediment influx. Through comparisons with slab descent reconstructions, we instead argue that the forearc uplift history primarily reflects the progressive establishment and abrupt destruction of an upper-mantle convection cell with strong negative buoyancy. We suggest that the convection cell vigour increased as the slab-induced mantle flow field began to interact with the 660-km mantle transition zone, causing uplift rates to decline from 25 to 15 Ma. Then, once the slab encountered the transition zone, the fully established convection cell subdued uplift rates, before being disrupted by slab fragmentation in the Quaternary, driving rapid forearc uplift. 
    more » « less
  3. Abstract Landscape evolution is driven by factors like tectonics and climate, and unraveling such factors can reveal the history recorded in landscape morphology. The northern U.S. Cordillera features many potential drivers, such as the Yellowstone plume, the extrusion of a large igneous province, and the drainage of large lakes. Among this complex geologic history, the drivers of transient incision in the Clearwater and Salmon watersheds of central Idaho are not well understood. To constrain the pattern of regional incision, we analyze the morphologies of 80 individual tributaries underlain by single lithologies. From north to south across our study area, knickpoint elevations increase from about 800 to 2,200 m, and incision depths increase from about 300 to 1,200 m. We use both numerical and analytical models to demonstrate that such a gradient could represent spatial variations in rock uplift. These findings suggest that transience is driven by a spatially variable increase in rock uplift that has disrupted a low‐relief paleolandscape, and the high steepness values of main drainages suggest that high rock‐uplift rates are still maintained to the present. Changes in rock uplift may be related to interactions between the Yellowstone plume and the lithosphere, although base level fall from the drainage of the Lake Idaho down the proto‐Snake River may be superimposed over these patterns in rock uplift. We show that careful, quantitative analyses of river profiles in geologically complex regions can differentiate between the influences of rock uplift and far‐field base level changes. 
    more » « less
  4. Abstract Prior numerical modeling work has suggested that incision into sub‐horizontal layered stratigraphy with variable erodibility induces non‐uniform erosion rates even if base‐level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base‐level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff‐forming units, erosion rates estimated from concentrations of cosmogenic beryllium‐10 (10Be) in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream‐power incision model as a quantitative guide to the potential magnitude of this amplification of10Be‐derived erosion rates above the rate of base‐level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening‐slope gradient on threshold hillslopes. We test our predictions in the cliff‐and‐bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base‐level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3–6‐fold range in rock strength from near‐surface P‐wave velocity measurements. The approximately four‐fold difference between the median10Be‐derived erosion rate and the long‐term rate of base‐level fall is consistent with our model and the observation that the stronger, cliff‐forming lithologies in this landscape are the primary source of quartz in detrital sediments. © 2020 John Wiley & Sons, Ltd. 
    more » « less
  5. Abstract. Landscape morphology reflects drivers such as tectonicsand climate but is also modulated by underlying rock properties. Whilegeomorphologists may attempt to quantify the influence of rock strengththrough direct comparisons of landscape morphology and rock strengthmetrics, recent work has shown that the contact migration resulting from the presence of mixed lithologies may hinder such an approach. Indeed, this work counterintuitively suggests that channel slopes within weaker units can sometimes be higher than channel slopes within stronger units. Here, we expand upon previous work with 1-D stream power numerical models in which we have created a system for quantifying contact migration over time. Although previous studies have developed theories for bedrock rivers incising through layered stratigraphy, we can now scrutinize these theories with contact migration rates measured in our models. Our results show that previously developed theory is generally robust and that contact migration rates reflect the pattern of kinematic wave speed across the profile. Furthermore, we have developed and tested a new approach for estimating kinematic wave speeds. This approach utilizes channel steepness, a known base-level fall rate, and contact dips. Importantly, we demonstrate how this new approach can be combined with previous work to estimate erodibility values. We demonstrate this approach by accurately estimating the erodibility values used in our numerical models. After this demonstration, we use our approach to estimate erodibility values for a stream near Hanksville, UT. Because we show in our numerical models that one can estimate the erodibility of the unit with lower steepness, the erodibilities we estimate for this stream in Utah are likely representative of mudstone and/or siltstone. The methods we have developed can be applied to streams with temporally constant base-level fall, opening new avenues of research within the field of geomorphology. 
    more » « less