In a recent work, Moshkovitz [FOCS '14] presented a transformation on two-player games called ``fortification'', and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an \emph{analytic reformulation} of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show \emph{any} game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, two problems which have recently received much attention. An important component of our work is a variant of the fortification transformation, called ``ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting. 
                        more » 
                        « less   
                    
                            
                            A Continuous Information Gain Measure to Find the Most Discriminatory Problems for AI Benchmarking
                        
                    
    
            This paper introduces an information-theoretic method for selecting a subset of problems which gives the most information about a group of problem-solving algorithms. This method was tested on the games in the General Video Game AI (GVGAI) framework, allowing us to identify a smaller set of games that still gives a large amount of information about the abilities of different game-playing agents. This approach can be used to make agent testing more efficient. We can achieve almost as good discriminatory accuracy when testing on only a handful of games as when testing on more than a hundred games, something which is often computationally infeasible. Furthermore, this method can be extended to study the dimensions of the effective variance in game design between these games, allowing us to identify which games differentiate between agents in the most complementary ways. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1717324
- PAR ID:
- 10231871
- Date Published:
- Journal Name:
- IEEE Congress on Evolutionary Computation
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)We present a new method of automatic critical mechanic discovery for video games using a combination of game description parsing and playtrace information. This method is applied to several games within the General Video Game Artificial Intelligence (GVG-AI) framework. In a user study, human-identified mechanics are compared against system-identified critical mechanics to verify alignment between humans and the system. The results of the study demonstrate that the new method is able to match humans with higher consistency than baseline. Our system is further validated by comparing MCTS agents augmented with critical mechanics and vanilla MCTS agents on 4 games from GVG-AI. Our new playtrace method shows a significant performance improvement over the baseline for all 4 tested games. The proposed method also shows either matched or improved performance over the old method, demonstrating that playtrace information is responsible for more complete critical mechanic discovery.more » « less
- 
            In multi-agent dynamic games, the Nash equilibrium state trajectory of each agent is determined by its cost function and the information pattern of the game. However, the cost and trajectory of each agent may be unavailable to the other agents. Prior work on using partial observations to infer the costs in dynamic games assumes an open-loop information pattern. In this work, we demonstrate that the feedback Nash equilibrium concept is more expressive and encodes more complex behavior. It is desirable to develop specific tools for inferring players’ objectives in feedback games. Therefore, we consider the dynamic game cost inference problem under the feedback information pattern, using only partial state observations and incomplete trajectory data. To this end, we first propose an inverse feedback game loss function, whose minimizer yields a feedback Nash equilibrium state trajectory closest to the observa- tion data. We characterize the landscape and differentiability of the loss function. Given the difficulty of obtaining the exact gradient, our main contribution is an efficient gradient approximator, which enables a novel inverse feedback game solver that minimizes the loss using first-order optimization. In thorough empirical evaluations, we demonstrate that our algorithm converges reliably and has better robustness and generalization performance than the open-loop baseline method when the observation data reflects a group of players acting in a feedback Nash game.more » « less
- 
            While interacting with a machine, humans will naturally formulate beliefs about the machine's behavior, and these beliefs will affect the interaction. Since humans and machines have imperfect information about each other and their environment, a natural model for their interaction is a game. Such games have been investigated from the perspective of economic game theory, and some results on discrete decision-making have been translated to the neuromechanical setting, but there is little work on continuous sensorimotor games that arise when humans interact in a dynamic closed loop with machines. We study these games both theoretically and experimentally, deriving predictive models for steady-state (i.e. equilibrium) and transient (i.e. learning) behaviors of humans interacting with other agents (humans and machines). Specifically, we consider experiments wherein agents are instructed to control a linear system so as to minimize a given quadratic cost functional, i.e. the agents play a Linear-Quadratic game. Using our recent results on gradient-based learning in continuous games, we derive predictions regarding steady-state and transient play. These predictions are compared with empirical observations of human sensorimotor learning using a teleoperation testbed.more » « less
- 
            Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality – also referred to as the Interdependent Security (IDS) games – and the Stackelberg game as a formalism to model a variety of attacker-defender scenarios. In this study we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    