Lanthanum strontium cobalt iron oxide (LSCF) is commonly used as a cathode in solid oxide fuel cells (SOFCs), because it is a mixed ionic-electronic conductor with reasonable oxygen ion conductivity and high electronic conductivity. Yttria stabilized zirconia (YSZ) is used as an electrolyte in SOFCs with good oxygen ion conductivity. AC techniques are used to test the performance of SOFCs. But electrode processes at the cathode and the anode cannot be studied separately using 2-probe electrical impedance spectroscopy (EIS). To overcome this problem, 2-probe EIS with three probes and DC tests were conducted. An LSCF/8YSZ/LSCF symmetrical bar-shaped cell was made, and platinum strip electrodes were applied as probes for EIS and DC measurements. Impedance spectra across the cathode and the platinum strip electrode and across the anode and the platinum strip electrode were measured separately. The sum was evaluated to see if it matches the EIS spectra across the cathode and the anode. The polarity was switched to study how it affects the electrode processes. The polarization resistances of the electrodes were also measured by a DC method separately. EIS and DC measurements are in good agreement. Results indicate the two electrodes need not be identical.
more »
« less
Simulation of the Electrochemical Impedance in a Three-Dimensional, Complex Microstructure of Solid Oxide Fuel Cell Cathode and Its Application in the Microstructure Characterization
Electrochemical impedance spectroscopy (EIS) is a powerful technique for material characterization and diagnosis of the solid oxide fuel cells (SOFC) as it enables separation of different phenomena such as bulk diffusion and surface reaction that occur simultaneously in the SOFC. In this work, we simulate the electrochemical impedance in an experimentally determined, three-dimensional (3D) microstructure of a mixed ion-electron conducting (MIEC) SOFC cathode. We determine the impedance response by solving the mass conservation equation in the cathode under the conditions of an AC load across the cathode’s thickness and surface reaction at the pore/solid interface. Our simulation results reveal a need for modifying the Adler-Lane-Steele model, which is widely used for fitting the impedance behavior of a MIEC cathode, to account for the difference in the oscillation amplitudes of the oxygen vacancy concentration at the pore/solid interface and within the solid bulk. Moreover, our results demonstrate that the effective tortuosity is dependent on the frequency of the applied AC load as well as the material properties, and thus the prevalent practice of treating tortuosity as a constant for a given cathode should be revised. Finally, we propose a method of determining the aforementioned dependence of tortuosity on material properties and frequency by using the EIS data.
more »
« less
- PAR ID:
- 10231883
- Date Published:
- Journal Name:
- Frontiers in Chemistry
- Volume:
- 9
- ISSN:
- 2296-2646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Voltage losses during discharge have been quantitatively investigated in a coulombically balanced biphenyl (Bp)|sodium-polysulfide (Na2Sx) organic redox flow battery. The individual half-cell electrochemical impedance spectroscopy (EIS) response was studied using a flow cell with an in-situ sodium/sodium-ion reference electrode. The anode, consisting of Bp/Bp− couple, contributed approximately 58% of the total cell overpotential during discharge. Further investigation revealed that kinetic overpotential dominating both anode and cathode voltage losses during discharge. The EIS response for the sodium-polysulfide half-cell exhibits two semicircles at high and low frequencies. Since there is limited literature relating the high-frequency semicircle to a physical process, this work extends the investigation of cathode high-frequency EIS features using in-situ and ex-situ electrochemical diagnostic tools. The Bp Nyquist plot consisted of a single semi-circle due to its simpler redox reaction relative to the more complicated Na2Sx. Tafel analysis was used to calculate exchange current density values, with Bp having a lower exchange current density than Na2Sx. This finding explains the relatively higher Bp kinetic voltage loss as compared to Na2Sx.more » « less
-
Dense silver (Ag) cathodes with defined triple phase boundary (TPB between the interface of electrolyte, electrode, and gas) lengths (LTPB) and electrode areas (AELT) were fabricated by photolithography and E-beam evaporation over a proton conducting BaZr0.4Ce0.4Y0.1Yb0.1O3−δ (BZCYYb4411) electrolyte. A bi-layer lift-off resist method appears to be more versatile than a single layer lift-off resist method for successful patterned cathode fabrication. The electrochemical behaviors of the patterned Ag cathodes over the BZCYYb4411 electrolyte were tested by electrochemical impedance spectroscopy (EIS) at different temperatures in atmospheres with different concentrations of O2 and H2O. The results were processed using Distribution of Relaxation Times (DRT) and reaction order analyses and also fitted to equivalent circuits. The directions for future work on patterned electrodes with different LTPB and AELT and theoretical calculations to gain further insights into the kinetics and mechanism of the cathode oxygen reduction reaction (ORR) over proton conducting electrolytes are pointed out.more » « less
-
Solid oxide electrolysis cells (SOECs) are promising for the selective electrochemical conversion of CO 2 , or mixed streams of CO 2 and H 2 O, into high energy products such as CO and H 2 . However, these systems are limited by the poor redox stability of the state-of-the-art Ni-based cathode electrocatalysts. Due to their favorable redox properties, mixed ionic-electronic conducting (MIEC) oxides have been considered as promising alternatives. However, improvement of the electrochemical performance of MIEC-based SOEC electrocatalysts is needed and requires an understanding of the factors that govern their activity. Herein, we investigate the effect of B-site 3 d metal cations (Cr, Fe, Co, Ni) of LaBO 3 perovskites on their CO 2 electrochemical reduction activity in SOECs. We find that their electrochemical performance is highly dependent on the nature of the B-site cation and trends as LaFeO 3 > LaCoO 3 > LaNiO 3 > LaCrO 3 . Among these perovskites, LaNiO 3 is the least stable and decomposes under electrochemical conditions. In situ characterization and ab initio theoretical calculations suggest that both the nature of the B-site cation and the presence of oxygen surface vacancies impact the energetics of CO 2 adsorption and reduction. These studies provide fundamental insights critical toward devising ways to improve the performance of MIEC-based SOEC cathodes for CO 2 electroreduction.more » « less
-
Abstract Perovskites have emerged as a forerunner of electronics research due to their vast potential for optoelectronic applications. The numerous combinations of constituent ions and the potential for doping of perovskites lead to a high demand to track the underlying electronic properties. Solution‐based electrochemistry is particularly promising for detailed and facile assessment of perovskites. Here, electrochemical impedance spectroscopy (EIS) of methylammonium lead iodide (MAPbI3) thin films is performed and model them with an equivalent circuit that accounts for solvent, ionic, and thin film effects. A dielectric constant consistent with prior AC studies and a diffusion constant harmonious with cation motion in MAPbI3are extracted. An electrical double layer thickness in the perovskite film of 54 nm is obtained, consistent with lithium doping in perovskite films. Comparing the EIS and equivalent circuit model of perovskite films to control ITO‐only data enabled the assignment of the ions at each interface. This comparison implied a double layer of primarily lithium ions inside the perovskite film at the solution interface with significant recombination of ions on the solution side of the interface. This demonstrates EIS as a powerful tool for studying the fundamental charge accumulation and transport processes in perovskite thin films.more » « less