Abstract Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (c-CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading to acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains.
more »
« less
Interstellar Enolization‐Acetaldehyde (CH 3 CHO) and Vinyl Alcohol (H 2 CCH(OH)) as a Case Study
Abstract Owing to the unique conditions in cold molecular clouds, enols—the thermodynamically less stable tautomers of aldehydes and ketones—do not undergo tautomerization to their more stable tautomers in the gas phase because they cannot overcome tautomerization barriers at the low temperatures. Laboratory studies of interstellar analog ices have demonstrated the formation of several keto–enol tautomer pairs in astrochemically relevant ice mixtures over the last years. However, so far only one of them, acetaldehyde−vinyl alcohol, has been detected in deep space. Due to their reactivity with electrophiles, enols can play a crucial role in our understanding of the molecular complexity in the interstellar medium and in comets and meteorites. To study the enolization of aldehydes in interstellar ices by interaction with galactic cosmic rays (GCRs), we irradiated acetaldehyde ices with energetic electrons as proxies of secondary electrons generated in the track of GCRs while penetrating interstellar ices. The results indicate that GCRs can induce enolization of acetaldehyde and that intra‐ as well as intermolecular processes are relevant. Therefore, enols should be ubiquitous in the interstellar medium and could be searched for using radio telescopes such as ALMA. Once enols are detected and abundances are established, they can serve as tracers for the non‐equilibrium chemistry in interstellar ices thus eventually constraining fundamental reaction mechanisms deep inside interstellar ices.
more »
« less
- Award ID(s):
- 1800975
- PAR ID:
- 10232004
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 22
- Issue:
- 12
- ISSN:
- 1439-4235
- Page Range / eLocation ID:
- p. 1229-1236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Enols—tautomers of ketones or aldehydes—are considered key intermediates in the formation of prebiotic sugars and sugar acids. Although laboratory simulation experiments suggest that enols should be ubiquitous in the interstellar medium, the underlying formation mechanisms of enols in interstellar environments are largely elusive. Here, we present the laboratory experiments on the formation of glyoxal (HCOCHO) along with its ynol tautomer acetylenediol (HOCCOH) in interstellar ice analogs composed of carbon monoxide (CO) and water (H2O) upon exposure to energetic electrons as a proxy for secondary electrons generated from Galactic cosmic rays. Utilizing tunable vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyoxal and acetylenediol were detected in the gas phase during temperature-programmed desorption. Our results reveal the formation pathways of glyoxal via radical–radical recombination of two formyl (HĊO) radicals, and that of acetylenediol via keto-enol-ynol tautomerization. Due to the abundance of carbon monoxide and water in interstellar ices, glyoxal and acetylenediol are suitable candidates for future astronomical searches. Furthermore, the detection of acetylenediol in astrophysically relevant ices advances our understanding for the formation pathways of high-energy tautomers such as enols in deep space.more » « less
-
We unravel, for the very first time, the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH), as well as their enol tautomers within mixed ices of methanol (CH 3 OH) and acetaldehyde (CH 3 CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH) via radical–radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH 3 C(OH)CHOH), prop-2-ene-1,2-diol (CH 2 C(OH)CH 2 OH), 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity.more » « less
-
Abstract Oxygen-containing complex organic molecules are key precursors to biorelevant compounds fundamental for the origins of life. However, the untangling of their interstellar formation mechanisms has just scratched the surface, especially for oxygen-containing cyclic molecules. Here, we present the first laboratory simulation experiments featuring the formation of all three C2H4O isomers—ethylene oxide (c–C2H4O), acetaldehyde (CH3CHO), and vinyl alcohol (CH2CHOH)—in low-temperature model interstellar ices composed of carbon monoxide (CO) and ethanol (C2H5OH). Ice mixtures were exposed to galactic cosmic-ray proxies with an irradiation dose equivalent to a cold molecular cloud aged (7 ± 2) × 105yr. These biorelevant species were detected in the gas phase through isomer-selective photoionization reflectron time-of-flight mass spectrometry during temperature-programmed desorption. Isotopic labeling experiments reveal that ethylene oxide is produced from ethanol alone, providing the first experimental evidence to support the hypothesis that ethanol serves as a precursor to the prototype epoxide in interstellar ices. These findings reveal feasible pathways for the formation of all three C2H4O isomers in ethanol-rich interstellar ices, offering valuable constraints on astrochemical models for their formation. Our results suggest that ethanol is a critical precursor to C2H4O isomers in interstellar environments, representing a critical step toward unraveling the formation mechanisms of oxygen-containing cyclic molecules, aldehydes, and their enol tautomers from alcohols in interstellar ices.more » « less
-
Abstract The formation of complex organic molecules by simulated secondary electrons generated in the track of galactic cosmic rays was investigated in interstellar ice analogs composed of methanol and carbon dioxide. The processed ices were subjected to temperature-programmed desorption to mimic the transition of a cold molecular cloud to a warmer star-forming region. Reaction products were detected as they sublime using photoionization reflectron time-of-flight mass spectrometry. By employing isotopic labeling, tunable photoionization and computed adiabatic ionization energies isomers of C2H4O3were investigated. Product molecules carbonic acid monomethyl ester (CH3OCOOH) and glycolic acid (HOCH2COOH) were identified. The abundance of the reactants detected in analog interstellar ices and the low irradiation dose necessary to form these products indicates that these molecules are exemplary candidates for interstellar detection. Molecules sharing a tautomeric relationship with glycolic acid, dihydroxyacetaldehyde ((OH)2CCHO), and the enol ethenetriol (HOCHC(OH)2), were not found to form despite ices being subjected to conditions that have successfully produced tautomerization in other ice analog systems.more » « less