Abstract We propose that the mantle lithospheric density and crustal thickness are correlated in such a way as to produce a flat Tibetan Plateau. We observe that the mantle lithosphere is relatively uniform beneath the Himalaya and southern and central Tibet, despite a near doubling of crustal thickness relative to India. Farther north, cratonic mantle lithosphere disappears over large regions of north-central Tibet, giving rise to large lateral variations in uppermost mantle Vs anomalies (>12%) that are uncorrelated with changes in surface elevation but are closely related to changes in crustal thickness. This decoupling of surface topography from spatial variations in upper mantle seismic velocity, and assumed buoyancy, implies that Tibetan topography is controlled by a crust-mantle interaction that is able to maintain its near constant elevation. This crust-mantle interaction is likely driven by gravitational potential energy with a very weak crust. Magmatism, with ages of ca. 20 Ma to Present, spatially correlated with this region with no sub-Moho mantle lithosphere implies destabilization of mantle lithosphere in northern Tibet. Cratonic Indian underthrusting for the past 25 m.y. has also not led to significant topography in the plateau through time. The magmatism may have helped weaken the crust, allowing it to respond to changes in uppermost mantle buoyancy, resulting in a flat plateau.
more »
« less
Seismic anisotropy reveals crustal flow driven by mantle vertical loading in the Pacific NW
Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers.
more »
« less
- Award ID(s):
- 1727451
- PAR ID:
- 10232206
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 28
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabb0476
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Seismic waves with different propagation and oscillation directions can exhibit different velocities when going through a medium with some directional properties; this phenomenon is called seismic anisotropy. Seismic anisotropy observed beneath eastern North America is often attributed to present-day flow in the upper mantle. The mantle flow causes shear waves oscillating in the direction of flow (e.g., in the direction of North America plate motion) to travel faster than those that travel in other directions. However, this pattern does not hold true for some regions along the Appalachian orogen, suggesting that past tectonic events can result in long-lived, ‘frozen-in’ anisotropy in the lithosphere, which modifies the predicted anisotropic behavior beneath these regions. In this study, we investigate sources of seismic anisotropy beneath southern New England using a method based on directionally dependent variations of P-wave to S-wave conversions at interfaces with contrasts in anisotropy. This method can separate signals caused by different anisotropic features and constrain the depth distribution of anisotropy. Within the crust there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen-parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra-crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion-parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area.more » « less
-
Abstract Seismic anisotropy beneath eastern North America, as expressed in shear wave splitting observations, has been attributed to plate motion‐parallel shear in the asthenosphere, resulting in fast axes aligned with the plate motion. However, deviations of fast axes from plate motion directions are observed near major tectonic boundaries of the Appalachians, indicating contributions from lithospheric anisotropy associated with past tectonic processes. In this study, we conduct anisotropic receiver function (RF) analysis using data from a dense seismic array traversing the New England Appalachians in Connecticut to examine anisotropic layers in the crust and upper mantle and correlate them with past tectonic processes as well as present‐day mantle flow. We use the harmonic decomposition method to separate directionally‐dependent variations of RFs and focus on features with the same harmonic signals observed across multiple stations. Within the crust, there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen‐parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra‐crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion‐parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area.more » « less
-
null (Ed.)Two types of surface wave anisotropy are observed regularly by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the crust and uppermost mantle on a 0.5° × 0.5° spatial grid. In the interior of eastern Tibet and in the Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control upper crustal anisotropy and the crystal-preferred orientation of anisotropic (perhaps micaceous) minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal flows are rotated near the borders of Tibet.more » « less
-
The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2015-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present results from these experiments that are shedding new light on the tectonic evolution of New England and the ways in which structures and processes in the upper mantle can affect the structure of the overlying lithosphere. These include detailed new images of crustal architecture beneath central and southern New England, including a sharp transition from thick (~48 km) crust Laurentia terranes to thin (~32 km) crust beneath Appalachian terranes. The character of this offset beneath the SEISConn and NEST arrays suggests an overlap of two Moho boundaries, forming an overthrust-type structure that may have resulted from reactivation of faults during the compression and shortening associated with the formation of the hypothesized Acadian Altiplano. Beneath SEISConn, there is evidence for multiple relict structures preserved in the lithosphere from past episodes of terrane accretion and suturing, as well as anisotropic layering that constrains the kinematics of past lithospheric deformation events. Beneath the NEST line in central New England, we infer a relatively shallow (~80 km) lithosphere-asthenosphere boundary above the NAA upper mantle geophysical anomaly, providing evidence for lithospheric thinning above a presumed asthenospheric upwelling. Finally, preliminary results suggest layered crustal anisotropy beneath the GENESIS array, perhaps corresponding to a past episode of channel flow in the mid-crust.more » « less
An official website of the United States government

