skip to main content


Title: Rain Drop Shapes and Scattering Calculations: A Case Study using 2D Video Disdrometer Measurements and Polarimetric Radar Observations at S-band During Hurricane Dorian Rain-Bands
On 9 September 2019, rain-bands of category-1 Hurricane Dorian passed over a ground instrumentation site in Delmarva peninsula, USA. Drop shapes derived from 2D Video Disdrometer measurements at this site were used to compute the S-band radar cross sections (RCS) for horizontal and vertical polarizations for each drop with equi-volume diameter > 2 mm. These are combined with RCS for the smaller drops assuming equilibrium shapes. Radar reflectivity (Zh ) and differential reflectivity (Zdr ) are calculated for each of the 3 minutes throughout the event which lasted for more than 8 hours. These are compared with simultaneous observations from an S-band polarimetric radar 38 km away. The comparisons highlight the impact of large amplitude drop oscillations on Zdr  more » « less
Award ID(s):
1901585
NSF-PAR ID:
10232253
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
15th European Conference on Antennas and Propagation
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical storm Nate, which was a powerful hurricane prior to landfall along the US Gulf coast, traversed north and weakened considerably to a tropical depression as it moved near an instrumented site in Hunstville, AL. The outer rain bands lasted 18 h (03:00 to 21:00 UTC on 08 October 2017) and a 2D-video disdrometer (2DVD) captured the event which was shallow at times and indicative of pure warm rain processes. The 2DVD measurements are used for 3D reconstruction of drop shapes (including the rotationally asymmetric drops) and the drop-by-drop scattering matrix has been computed using Computer Simulation Technology integral equation solver for drop sizes >2.5 mm. From the scattering matrix elements, the polarimetric radar observables are simulated by integrating over 1 min consecutive segments of the event. These simulated values are compared with dual-polarized C-band radar data located at 15 km range from the 2DVD site to evaluate the contribution of the asymmetric drop shapes, specifically to differential reflectivity. The drop fall velocities and drop horizontal velocities in terms of magnitude and direction, all being derived from each drop image from two orthogonal cameras of the 2DVD, are also considered. 
    more » « less
  2. Abstract

    A variational retrieval of rain microphysics from polarimetric radar data (PRD) has been developed through the use of S-band parameterized polarimetric observation operators. Polarimetric observations allow for the optimal retrieval of cloud and precipitation microphysics for weather quantification and data assimilation for convective-scale numerical weather prediction (NWP) by linking PRD to physical parameters. Rain polarimetric observation operators for reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP were derived for S-band PRD using T-matrix scattering amplitudes. These observation operators link the PRD to the physical parameters of water content W and mass-/volume-weighted diameter Dm for rain, which can be used to calculate other microphysical information. The S-band observation operators were tested using a 1D variational retrieval that uses the (nonlinear) Gauss–Newton method to iteratively minimize the cost function to find an optimal estimate of Dm and W separately for each azimuth of radar data, which can be applied to a plan position indicator (PPI) radar scan (i.e., a single elevation). Experiments on two-dimensional video disdrometer (2DVD) data demonstrated the advantages of including ΦDP observations and using the nonlinear solution rather than the (linear) optimal interpolation (OI) solution. PRD collected by the Norman, Oklahoma (KOUN) WSR-88D on 15 June 2011 were used to successfully test the retrieval method on radar data. The successful variational retrieval from the 2DVD and the radar data demonstrate the utility of the proposed method.

     
    more » « less
  3. null (Ed.)
    A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation through rapid tornado intensification. Owing to the 20-s temporal resolution of PX-1000, a detailed radar analysis of the hook echo is performed on (1) the microphysical characteristics through a hydrometeor classification algorithm (HCA)—inter-compared between X- and S-band for performance evaluation—including a hail and debris class and (2) kinematic properties of the low-level mesocyclone (LLM) assessed through ΔVr analyses. Four transient intensifications in ΔVr prior to tornadogenesis are documented and found to be associated with two prevalent internal rear-flank downdraft (RFD) momentum surges, the latter surge coincident with tornadogenesis. The momentum surges are marked by a rapidly advancing reflectivity (ZH) gradient traversing around the LLM, descending reflectivity cores (DRCs), a drop in differential reflectivity (ZDR) due to the advection of smaller drops into the hook echo, a decrease in correlation coefficient (ρhv), and the detection of debris from the HCA. Additionally, volumetric analyses of ZDR and specific differential phase (KDP) signatures show general diffusivity of the ZDR arc even after tornadogenesis in contrast with explosive deepening of the KDP foot downshear of the updraft. Similarly, while the vertical extent of the ZDR and KDP columns decrease leading up to tornadogenesis, the phasing of these signatures are offset after tornadogenesis, with the ZDR column deepening the lagging of KDP. 
    more » « less
  4. A polarimetric radar method to estimate mean shapes of ice hydrometeors was applied to several snowfall and ice cloud events observed by operational and research weather radars. The hydrometeor shape information is described in terms of their aspect ratios, r, which represent the ratio of particle minor and major dimensions. The method is based on the relations between depolarization ratio (DR) estimates and aspect ratios. DR values, which are a proxy for circular depolarization ratio, were reconstructed from radar variables of reflectivity factor, Ze, differential reflectivity, ZDR, and copolar correlation coefficient ρhv, which are available from radar systems operating in either simultaneous or alternate transmutation of horizontally and vertically polarized signals. DR-r relations were developed for retrieving aspect ratios and their sensitivity to different assumptions and model uncertainties were discussed. To account for changing particle bulk density, which is a major contributor to the retrieval uncertainty, an approach is suggested to tune the DR-r relations using reflectivity-based estimates of characteristic hydrometeor size. The analyzed events include moderate snowfall observed by an operational S-band weather radar and a precipitating ice cloud observed by a scanning Ka-band cloud radar at an Arctic location. Uncertainties of the retrievals are discussed. 
    more » « less
  5. Recent studies revealed that scattering calculations at weather radar frequencies using individual drop shapes result in better agreement between simulated and measured polarimetric weather radar parameters, than if established rotational symmetric shape models are used. In the present work, thousands of individual rain drops that were detected with a 2D Video Disdrometer during a tropical storm, were reconstructed and their individual radar cross sections (RCS) were calculated by automatizing a commercial EM solver software. The calculations were carried out at the common weather radar frequencies at 2.8 GHz and 5.625 GHz, both for horizontal and vertical polarization. It is evaluated to what extend the RCS can differ for drops with an equal volume, it is discussed how the scattering parameters of individual drops scale within S- and C-band frequencies, and it is shown for one sample drop what effect the modelling granularity has on determined radar cross section values. 
    more » « less